slide 1

Back to the List of the Granted Patents                                                                         Click here to download KE000469 PDF

(11) Patent Number: KE 469
   
(45) Date of grant: 02/11/2011    Kenya Industrial Property Institute.           

(51) Int.Cl.8: A 23D 7/00, 7/05, 9/05

(21) Application Number: KElP/ 2007/000629

(22) Filing Date: 25/0112006

(30) Priority data: 05075384.7  17/02/2005  EP; 05075391.2    17/02/2005  EP; 05075392.0  17/02/2005  EP and 05075393.8    17/02/2005  EP

(86)  PCT data PCT/EP06/000800 25/01/2006 W0/2006/087091 24/08/2006
 
(73) Owner:Unilever PLC ofUnilever House, Blackfriars, London, EC4P 4BQ, United Kingdom

(72) Inventors:BARENDSE, Sandra, Petronella of UNILEVER R & D VLAARDINGEN, Olivier Van Noortlaan 120, NL-3133 AT Vlaardingen, The Netherlands; HUIZINGA, Hindrik ofUNILEVER R & D VLAARDINGEN, Olivier Van Noortlaan 120, NL-313 3 AT Vlaardingen, The Netherlands; FLOTER, Eckhard of UNILEVER R & D VLAARDINGEN, Olivier Van Noortlaan 120, NL-3133 AT Vlaardingen, The Netherlands; HOGERVORST, Wim, Theodorus of UNILEVER R & D VLAARDINGEN, Olivier Van Noortlaan 120, NL-3133 AT Vlaardingen, The Netherlands; HORSEN, Dirk, Simon, Hendriks, Van of UNILEVER R & D VLAARDINGEN, Olivier Van Noortlaan 120, NL-3133 AT Vlaardingen, The Netherlands and KEMPEN, Gijsbert, Michie!, Peter, Van of UNILEVER R & D VLAARDINGEN, Olivier Van Noortlaan 120, NL-3133 AT Vlaardingen, The Netherlands.

(74) Agent/address for correspondence:Kaplan & Stratton Advocates, P.O. Box 40111-00100, Nairobi
 
(54)Title:PROCESS FOR THE PREPARATION OF A SPREADABLE DISPERSION (57) Abstract:

Process for the preparation of a spreadable edible dispersion wherein a mixture of oil and solid structuring agent particles is subjected to stirring and an aqueous phase and/or solid phase is gradually added to the mixture until a dispersion of the desired oil content is obtained, wherein the solid structuring agent particles have a microporous structure of submicron size particles.

Process  for  the  preparation  of  a  spreadable  dispersion

Description

5  Field  of  the  invention

The present invention relates to a process for the preparation of a spreadable edible dispersion comprising oil and structuring agent, in particular to such dispersions• comprising oil and structuring agent as

10 continuous phase and a dispersed phase. The dispersed phase may be an aqueous liquid (thus forming a water-in-oil emulsion) and/or a solid particulate matter (thus forming a suspension) .


15  Background  of  the  invention

Edible dispersions comprising oil and structuring agent are well known. Examples of well-known products that substantially consist of such edible dispersions are water-in-oil emulsions, such as for instance margarines and

20 spreads. These edible dispersions typically have an• oil phase that is a blend of liquid oil and fat that is solid at normal ambient temperature (20°C) . This solid fat, often also designated as hardstock, acts as structuring agent, and its function is to stabilise the dispersion. For a

25 margarine or spread, ideally the structuring agent has such properties that it should have melted or dissolved at mouth temperature, otherwise the product has a heavy, waxy mouthfeel.

Other  known  dispersions  comprising  oil  and  structuring

30  agent  are  disclosed  in  EP-A-775444  and  WO  98/47386.  Herein

the dispersed phase is a dry particulate matter, such as e.g. flour, starch, salt, spices, herbs etc.

Generally, the edible dispersions comprising structuring agent are prepared according to prior art processes that

5  encompass  the  following  steps:

1)    mixing/dispersion of the aqueous phase •and/or the solid phase and the oil phase, at a temperature where the oil phase, including the structuring agent is liquid;
2)    formation  of  a  fat  crystal  network  .to  stabilise  the

10    resulting dispersion and give the product some degree of firmness;

3)    modification of the crystal network to produce the desired firmness and confer plasticity.

15    In case the dispersion is a low-fat water-in-oil emulsion spread (i.e. with a oil content of 45wt% or less), normally in step 1) a oil-in-water emulsion (premix) is formed, which in step 2) is inverted, so that a transition of the emulsion from oil-in-water to water-in oil (inversion)

20 occurs. Inversion has a number of disadvantages: it is difficult to control and rework (i.e. material that is not packed, but returned to the premix, needs to be reinverted, which may lead to processing complications.


25 The steps 1)-3) are usually conducted in a process that involves apparatus that allow heating, cooling and mechanical working of the ingredients, such as the churn process or the votator process. The churn process and the votator process are described in Ullmanns Encyclopedia,

30 Fifth Edition, Volume A 16 pages 156-158. Using these techniques excellent dispersions (spreads) having high

emulsion stability and good melting properties in the mouth can be prepared.



However, a disadvantage of the known processes is that the 5 process involves a heating step and a cooling step and

therefore requires a lot of energy. In a dispersion with for instance 4 wt.% structuring agent the whole weight of the dispersion (100 wt.%) needs to be heated and cooled.

10 Another disadvantage of the known processes is that the choice of fats that can practically be used as structuring agent is rather limited. If the melting point of the structuring agent is too high the melting properties in the mouth are unsatisfactory. If on the other hand, the melting

15 point is too low, the emulsion stability will be negatively affected. Moreover the amount of saturated fatty acids in the structuring agent is us~ally relatively high. Satu~ated fatty acids are a known risk factor for cardiovascular health.


20

Further disadvantage of the known processes is that the product may deteriorate due to the changes in temperature caused by the heating and cooling step and that heat-sensitive ingredients cannot be incorporated.

25

Additionally, when low-fat spreads are prepared an inversion step is usually needed, which is difficult to control and has rework problems.


30 Co-pending application PCT/EP2004/006544 describes edible dispersions, including water-in-oil emulsions, that comprise a structuring agent having a microporous structure
 
of submicron size particles. The water-in-oil emulsion may be a table spread. In the examples pourable emulsions and pourable dispersions were described. The edible dispersions may for instance be prepared by mixing an oil phase with

5 structuring agent particles with a separately prepared water phase.



Summary  of  the  invention

It  is  therefore  an  object  of  the  invention  to  provide  a

10 process for the preparation of a spreadable dispersion that requires less energy than the known processes. Another object is to provide such a process that allows the use of more types of structuring agent, especially more sorts of hardstock. A further object of the invention is a reduction

15 of the amount of saturated fatty acids in the hardstock. Still a further object of the invention is to provide a process for the preparation of a dispersion that allows the incorporation of heat-sensitive ingredients and/or that avoids deterioration of the emulsion.

20

One or more of these objects is attained according to the invention which provides a process for the preparation of a spreadable edible dispersion wherein a mixture of oil and solid structuring agent particles is subjected to stirring

25 and an aqueous phase is gradually added to the mixture until a dispersion is obtained, wherein the solid structuring agent particles, also described as secondary particles have a microporous structure, and said particles are agglomerates of primary particles of submicron size,

30    said primary particles are platelets having an average thickness of O.Ol-0.5pm.

Gradually is herein defined as not adding the whole solid or aqueous phase at the start of the process, but in two or more portions at different times during the process if conducted batchwise or in two or more places in the process

5  equipement  in  a  continuous  process.

With the process according to the invention, products are obtained that have a smaller water droplet size (03,3 as described herein) and a firmer structure (Stevens value as

10 described herein measured at room temperature) than products prepared according to the prior art votator process. The smaller water droplet size leads to increased microbiological stability, so products may be made that need less or no salt and/or preservative.

15

Further according to the invention low fat spreads may be prepared that need no thickenener or gelling agent in the water phase. When low-fat spreads are prepared an additional advantage of the process according to the

20  invention  is  that  no  inversion  is  needed.

Contrary to the process described in Co-pending application PCT/EP2004/006544, in the present process the aqueous phase and/or solid phase is gradually added to the mixture until

25 a dispersion of the desired oil content is obtained. This makes the preparation of dispersion having a relatively low oil content, i.e. below 45 wt.%, possible.


Detailed  description  of  the  invention
 

30 According to the invention, an aqueous phase is gradually added to a mixture of oil and solid structuring agent particles which is stirred, until a dispersion is obtained.
 
A dispersion is herein defined as a system in which two or more phases that are insoluble or only slightly soluble are distributed in one another.


5 The dispersion may be an emulsion, a suspension or foam or any combination thereof, it may be oil continuous, water continuous or hi-continuous. Preferably the dispersion is oil continuous, more preferably an oil continuous emulsion or oil continuous suspension.

10

Where a solid phase is present in the dispersion according to the invention, it is preferably a solid phase of dry particulate matter.


15 Where an aqueous phase is present in the dispersion according to the invention, it is preferably a dispersed aqueous phase.


The amounts given will be expressed in wt.% relative to the 20 total weight of the food composition, unless indicated

otherwise.

Fat and oil may sometimes be used interchangably herein, for instance fat phase and oil phase and fat content or oil

25  content  may  be  used  to  indicate  the  same.

According to the invention spreadable edible dispersions are provided comprising micronised structuring agent particles wherein said structuring agent particles, also

30 described as secondary particles have a microporous structure, and said particles are agglomerates of primary particles of submicron size, said primary particles are
 
platelets having an average thickness of 0.01-0.5~, wherein the dispersion has a Stevens value, as defined herein and measured at room temperature, of 30g or more, preferably 50g or more, more preferably BOg or more and

5 most  preferably  100g  or  more.

Preferably the dispersion is a low-fat water-in-oil emulsion spread having a fat content of 45 wt.% or less.

10    The invention further provides a low-fat water-in-oil emulsion spread having a fat content of 45 wt.% or less, a Stevens value as defined herein as defined herein and

measured at room temperature, of 60 g or more and a saturated fat content (SAFA} of 25wt.% or less. SAFA

15 content (wt.%) is herein expressed based on the weight of the fat phase.


Preferably the spreadable edible dispersions according to the invention have a low water droplet size, preferably the

20    water droplet size as defined herein is 10~ or less, more preferably 5~ or less.



According to the invention, the dispersion is formed by mixing oil, the solid structuring agent particles and the

25 other phase or phases of the dispersion, such as for example an aqueous phase, a solid phase and/or a gas phase.

According to the invention, the solid structuring agent particles (also described herein as secondary particles)

30 should have a microporous structure of submicron size particles (also described herein as primary particles).

The secondary particles are agglomerates of primary particles which have a microporous strcuture. The size of the primary particles is submicron (that is have a diameter below lp).

5

An example of a microporous structure is shown in figures 6 and 7 of PCT/EP2004/006544. The primary particles typically have the shape as shown in figure 7, in which the platelets with submicron dimensions are the primary particles. The

10 thickness of the platelets should be submicron, preferably the thickness is on average 0.01-0.Spm, more preferably 0.03-0.2pm, even more preferably 0.06-0.12prn.

Equivalent  good  results  were  obtained  for  a  secondary

15 particles having a rnicroporous structure of more bubble-like shape, such as shown in figure 10 of PCT/EP2004/006544. In such microporous structure the wall thickness of the bubbles should'be submicron, for instance on average 0.01-0.5~, more preferably 0.03-0.2pm, even

20    more  preferably  0.06-0.12pm.

The secondary particles, may, in the course of the preparation of the dispersion, for instance through the

force of a mixer, be broken into submicron particles. The 25 resulting submicron particles will form the structuring

network  of  the  dispersion.

Preferably, the structuring agent is edible lipid, more preferably it is edible fat. Edible fats consist

30 predominantly of triglycerides. Typically such edible fats suitable as structuring agent are mixtures of triglycerides, some of which have a melting point higher

than room or ambient temperature and therefore contain solids in the form of crystals.

The solid structuring agent, also denoted as hardstock, 5 serves to structure the fat phase and helps to stabilise

the  dispersion.

For imparting to common margarine a semi-solid, plastic, spreadable consistency this stabilising and structuring

10 functionality plays an important role. The crystals of the solid fat form a network throughout the liquid oil resulting into a structured fat phase. The aqueous phase droplets are fixed within the spaces of the lattice of solid fat crystals. In this way coalescence of the droplets

15 and separation of the heavier aqueous phase from the fat phase is prevented.


The process according to the invention may be executed batch-wise or continuous. Conventional unit operations and

20 apparatus, e.g. mixers, pumps and extruders may be used. A suitable process flow diagram for a continuous process according to the invention is given in figure 1. Micronised fat may be added to the premix or via the inlet {5), preferably at least part of the micronised fat is added via

25  inlet  {5) •

Further common ingredients of the fat phase are emulsifiers, such as monoglycerides and lecithin, colouring agents and flavours.

30
 

The solid structuring agent particles {secondary particles) preferably have an average particle size (D3 , 2 ) of 60

micrometer or less, more preferably the solid structuring agent particles have an average particle size of 30 micrometer or less. The average particle size (03 , 2 ) is determined as indicated in the examples.

5

Preferably the solid structuring agent particles are prepared using a micronisation process. In the micronisation process the solid structuring agent particles are prepared by preparing a homogeneous mixture of

10 structuring agent and liquified gas or supercritical gas at a pressure of 5-40MPa and expanding the mixture through an orifice, under such conditions that a spray jet is applied in which the structuring agent is solidified and micronised. The liquified gas or supercritical gas may be

15 any gas that may be used in the preparation of food products, for example carbondioxide, nitrogen, propane, ethane, xenon or other noble gases. Carbondioxide and propane are preferred. Carbondioxide is most preferred. Advantages of carbondioxide are that it has a mild (3l°C)

20 critical temperature, it is non-flammable, nontoxic, environmentally friendly and it may be obtained from existing industrial processes without further contribution to the greenhouse effect. It is fairly miscible with oil and is readily recovered owing to its high volatility at

25    ambient conditions. Finally liquid C02 is the second least expensive solvent after water.

The temperature of the mixture of structuring agent and liquified gas or supercritical gas is preferably such that

30 the mixture forms a homogeneous mixture. Advantageously, the temperature of the mixture of structuring agent and liquified gas or supercritical gas is below the slip

melting point of the structuring agent at atmospheric pressure and above the temperature at which phase separation of the mixture occurs. Under such conditions the smallest micronised particles may be obtained.

5

The pressure and temperature of the mixture of structuring agent and liquified or supercritical gas is preferably such that a large amount of the gas may be dissolved in the structuring agent. The amount dissolved will be determined

10 by the phase diagram of the mixture of structuring agent and liquified or supercritical gas. At higher pressures as well as at lower temperatures more gas will dissolve in the structuring agent.


15 Preferably the temperature and pressure are chosen such that 10 wt.% or more, more preferably 20 wt.% or more or most preferably 30 wt.% or more of gas is dissolved in the liquid phase. The mixture of structuring agent and liquified or supercritical gas may contain additional

20 substances, such as for instance oil. We have found that the• addition of oil may reduce sintering of the rnicronised particles of the structuring agent.


The mixture containing structuring agent and liquified or 25 supercritical gas is depressurised over a small orifice or

nozzle, to break up the mixture into small droplets. The break-up of the mixture into droplets can be assisted e.g. by internals inside the nozzle before the orifice to generate a whirl, or by passing a gas at a high flow rate

30  near• the  orifice.


The mixture is depressurised into a volume where the pressure is higher than, equal to or lower than atmospheric pressure.


5 We have found that sintering, agglomeration and ripening of micronised particles of the structuring agent will lead to a reduced performance of the particles for structuring the dispersion.


10 To avoid sintering, agglomeration and/or ripening of the micronised particles, preferably a gas jet is applied in addition to the flow of the spray jet. The additional gas jet is most effective when the gas jet is positioned such that recirculation of material expanded through the orifice

15 is reduced or avoided. Especially advantageous is a position wherein the gas from the gas jet flows essentially tangentially to the flow direction of the spray jet. Most advantageously the gas inlet for the gas jet is positioned behind the exit of the nozzle, see figure 2 of co-pending

20 application PCT/EP2004/006544. This figure shows that the additional gas inlet (1) behind the exit of the nozzle (2) creates a gas flow (3) tangentially to the flow of the spray jet (4).


25 A further preferred edible dispersion according to the invention is a dispersion of a solid matter, preferably a dry particulate matter, dispersed in a continuous phase of oil and structuring agent. Preferred material for the dry particulate matter is one or more of flour, starch, salt,

30 herbs (e.g. dried herbs), spices and mixtures thereof. Preferably in such dispersions, the amount of solid matter
 
is 30-75 wt.%, more preferably 40-65 wt.% based on total weight of the dispersion.

The amount of structuring agent should be such that a suitably stable dispersion is obtained. When the

5 structuring agent is micronised fat, the amount is preferably 1-20 wt.%, more preferably 4-12 wt.% based on total weight of the dispersion.


Description  of  the  figures

10

Fig.    1    Process  flow  diagramme  for  a  continuous  process.

(1) designates a premix vessel, (2) a pump, (3) a high shear mixer, (4) an extruder type mixer and

(5)    a  feed  entrance  for  micronised  fat.

15

Examples

General

20  Method  to  determine  slip  melting  point

The slip melting point of structuring agent is determined in accordance with F. Gunstone et al, The Lipid Handbook, second edition, Chapman and Hall, 1995, page 321, Point

6.2.3,  Slip  point.

25

Method to determine D1,2 of the particle size distribution of micronised fat particles

Low-angle laser light scattering (LALLS, Helos Sympatic) 30 was used to measure the average particle size {03 . 2 ) . The

fat particles were suspended in water in a quixel flow cuvette with an obscuration factor of 10-20%. The

diffraction pattern was measured at 632.8 nrn with a lens focus of 100 rom and a measurement range of 0.5-175 ~•
Calculations  were  bases  on  the  Fraunhofer  theory.

5 A full description of the principle of LALLS is given in ISO 13320-1.


Method to determine 0 3 , 3 of water droplet size distribution in an emulsion

10 The water droplet size was measured using a well-known low resolution NMR measurement method. Reference is made to Van den Enden, J.C., Waddington, D., Van Aalst, H., Van Kralingen, e.G., and Packer, K.J., Journal of Colloid and Interface Science 140 (1990) p. 105.

15

Method  to  determine  oil  exudation

Oil exudation is determined by measuring the height of the free oil layer that appears on top of the product. This free oil layer is considered a product defect. In order to

20 measure oil exudation, the product is filled into a scaled glass cylinder of 50 ml. The filling height is 185 mm. The filled cylinder is stored in a cabinet at constant temperature (l5°C). Height measurements are executed every week, by measuring the height of the exuded oil layer in mm

25 with a ruler. Oil exudation is expressed as the height of the exuded oil layer divided by the original filling height and expressed in %. Shaking of the cylinders should be avoided.


30  Stevens  value

Stevens values give an indication about the firmness of a product. The firmness of all products stored at 5°C for 24
 
hours was measured at room temperature using a Stevens Texture Analyser (1 mm/sec, 25 mm depth, 4.4. mm probe) and is quoted herein as the Stevens value (in g) .

5  Example  1:  Preparation  of  a  spreadable  margarine

A high-fat spreadable margarine was prepared with the composition shown in table 1:

10  Table  1:  Composition  of  high-fat  spreadable  margarine

Ingredient    Amount
(wt. %)

Oil  phase       
Sunflower  oil        59.68
Micronised  fat    powder1    9.64
Lecithin  Bolec    ZT'    0.32
Emulsifier  Hymono  8903    0.20
beta-carotene    (0.4wt.%    0.15
solution  in  sunflower   
oil)       
Water  phase       
Water        29.65
Potassium  sorbate    0.08
Sodium  chloride    0.28

1 Hardstock fat as prepared in example 1 and 2 of EP-A-89082 which was micronised as in example 1 of PCT/EP2004/006544.

15

The water phase was prepared by adding salt and potassium sorbate to distilled water and adjusting the pH of distilled water from 7.7 to 4.0 using 5 wt.% solution of citric acid in water, •and heated for 5 minutes in a bath of

20 6o•c to dissolve the solids. The oil phase was prepared by dissolving the emulsifier ingredients and ~-carotene in the total amount of sunflower oil at Go•c and cooled down to


l5°C afterwards. Subsequently the micronised fat powder was added to the oil phase carefully using a spatula and the oil phase was mixed with a kitchen mixer (Philips Essence HR1357/05) for 2 minutes. Then the water phase was added to

5 the oil phase and the resulting mixture was mixed with the mixer for another 5 minutes at ambient temperature. A droplet size (03,3) of about 10~ was obtained. The spread was put in a margarine tub and stored at 5°C. Results in table 3.


10

Example  2:  Preparation  of  a  low-fat  spread

A low-fat (33wt.% fat) spreadable margarine spread was prepared with the composition shown in table 2:

15

Table  2:  Composition  of  low-fat  spread

Ingredient    Amount
(wt.%)
Oil  phase               
               
Sunflower  oil                27.65
Micronised  fat    powder    as    4.59
in  example  1               
Lecithin  Bolec    ZT~    0.32
Emulsifier  Hymono  8903    0.33
(monoglyceride)   
Beta  carotene    {0.4wt.%    0.15
solution  in  sunflower   
oil)               
Water  phase               
Water                66.60
Potassium  sorbate    0.08
Sodium  chloride    0.28

The micronised fat powder was mixed with half of the oil to obtain a fat powder/oil slurry. The fat/oil slurry was then

20 stirred manually in the remainder of the oil to make the oil phase. In the next step the oil phase (slurry) was put
 
in an EscoLabor device and half of the water phase was added to the oil phase. The EscoLabor vessel was kept at s•c. The water and oil phase were mixed under vacuum.

5 The scraper speed was found to be 80% of the maximum rotational speed and power of the Ultra Turrax was found to be optimal at 50% of maximum power. During the mixing of the oil- and water phases the remaining amount of water was added cautiously within 5 minutes. This yielded a

10 homogeneous but very thick fat continuous product after 15 minutes. After 15 a droplet size (03,3) of 3prn was obtained. This low fat spread was evaluated after 4 weeks of storage at s•c. Results are given in table 3.


15 Table 3: Stevens values and fat level low-fat rnicronised fat spread

Example        Fat  level    Stevens  value
        (%)    at  s•c  (g)
Example    1    70    88
           
Example    2    33    112
           


Example  3

20 A spread was produced with a composition as in table 4. A stable spread resulted. The water phase was made by mixing the salt in distilled water and holding the mixture at room temperature. The fat phase was produced by adding the micronised fat powder to liquid oil using a spatula. The

25 water phase and the oil phase were mixed using a home kitchen mixer. •



It was possible to prepare a stable spread without emulsifier and thickener. The long term stability and/or

consistency of the spread without emulsifier may be improved by adding a thickener to the water phase, e.g. 1 wt.% starch, a suitable starch type is Resistamyl 310.

5  Table  4:  composition  of  example  3

Oil            39.85   
Phase                   
        Sunflower  oil    33.87   
                   
    Micronised  fat  powder  as    5.98   
        in  example  1           
                   
        Beta-carotene  (0.4  wt.%    0.15   
        solution  in  Sunflower           
        oil)           
                   
Water    phase           
                   
    Water    59.5   
        Salt    0.5   
                   


Claims

1.    Process for the preparation of a spreadable edible dispersion wherein a mixture of oil and solid structuring agent particles is subjected to stirring and an aqueous phase is gradually added to the mixture until a dispersion is obtained, wherein the solid structuring agent particles, also described as secondary particles have a rnicroporous structure, and said particles are agglomerates of primary particles of submicron size, said primary particles are platelets having an average thickness of 0.01-0.Sprn.


2.    Process according to claim 1, wherein the solid structuring agent particles are edible lipid.

3.    Process according to claim 2, wherein the lipid is a fat.



4.    Process according to any of claims 1 to 3, wherein the solid structuring agent particles are prepared using a micronisation process.


5.    Spreadable edible dispersion comprising micronised structuring agent particles wherein said structuring agent particles, also described as secondary particles have a microporous structure, and said particles are agglomerates of primary particles of submicron size, said primary particles are platelets having an average thickness of 0.01-0.S~m, wherein the dispersion has a Stevens value, as defined

herein and measured at room temperature, of 30g or more, preferably SOg or more, more preferably BOg or more and most preferably lOOg or more.

6.    Spreadable edible dispersion according to claim 5, wherein the dispersion is a low-fat water-in-oil emulsion spread having a fat content of 45 wt.% or less.


7.    Low-fat water-in-oil emulsion spread according to claim 5, having a fat content of 45 wt.% or less, a Stevens value as defined herein and measured at room temperature of 60 g or more and a saturated fat content (SAFA) of 25wt.% based on fat phase, or

less.

8.    Spreadable edible dispersion according to any of claims 5-7, wherein the dispersion has a water droplet size as_defined herein of Spm or less.
 

Newsletter

Join our newsletter for CIPIT news through subscriptions!

SEND

Social Media

    

Contact Us

TEL : (254) 703 034 612