slide 1

Back to the List of the Granted Patents                                                                        Click here to download KE000427 PDF

(2l)Application Number:    KElP! 2010/001095   

(73) Owner: A OlN 43/38, 47/06, A OlP 5/00    BAYER CROP SCIENCE AG of , Alfred-Nobel-Str. 50, 40789 Monheim, Germany       

(72) Inventors: FISCHER, Reiner ofNelly-Sachs-Str. 23, 40789 Monheim am Rhein, Germany; STEFFENS, Robert of 312 Hogan Valley Way, Cary, NC 27513, U.S.A.; BELL, John, W. of344 Wilkinson Creek Lane, Chapel Hiii, NC 27516, U.S.A.; JIMENEZ, Manuel of 323 Old Lin s    Avenue, Exeter, CA 93322, U.S.A.; KRUEGER, Stephen of 604  Compton Road, Raleigh, NC  27609, U.S.A. and PERRY, John, L. of2321  21st Avenue, Kingsburg, CA

(30) Priority data: 61/008,507  20/12/2007

(86)  PCT data     PCTIUS08/013829    18/12/2008    93631,.U.S.A. wo 2009/085176    09/07/2009

(22) Filing Date: 18/12/2008
       
(74) Agent/address for correspondence:

Kaplan & Stratton Advocates, P.O. Box 40111-00100, Nairobi


(54) Title: USE OF TETRAMIC ACID DERIVATIVES FOR CONTROLLING NEMATODES.

(57) Abstract: THE PRESENT APPLICATION RELATES TO THE USE OF TETRAMIC ACID DERIVATIVES FOR CONTROLLING SOIL-DWELLING NEMATODES.

Use of tetramic acid derivatives for controlling nematodes

The present invention relates to the use of known tetramic acid derivatives for controlling soil-dwelling nematodes.

It  is  already  known  that  certain  cyclic  ketoenols  have  herbicidal,  insecticidal  and  acaricidal

5    properties. The activity of these substances is good; however, it is sometimes unsatisfactory at low application rates.

Known to have insecticidal and/or acaricidal action are lH-3-aryl-pyrrolidine-2,4-dione derivatives (WO 98/05638) and their cis-isomers (WO 04/007448).

Also known are mixtures of compounds from WO 98/05638 with other insecticides and/or acaricides:

10    WO 01/89300, WO 02/00025, WO 02/05648, WO 02/17715, WO 02/19824, WO 02/30199, WO 02/37963, WO 05/004603, WO 05/053405, WO 06/089665, DE-A-10342673, WO 2008/006516, WO 2008/006514, WO 2008/006513, WO 2008/006515, WO 2008/006512, WO 2008/009379. Also known are mixtures with nematic ides: file number EP07112279.

Moreover, they are known to be active against plant bugs (family: Miridae) (WO 2007/131681)

15    Also, WO 2007/126691 discloses an activity against leaf nematodes following dip treatment of flower bulbs.

Surprisingly, it has now been found that the compounds of the formulae (1-1) and (1-2)

(1-1)    (1-2)

known    from  WO  04/007448  reduce  the  population  density  of  soil-dwelling  plant-damaging

20    nematodes in annual and perennial crops after foliar treatment.

Preference is given to using the compound of the formula (I-I) for controlling soil-dwelling plant-damaging nematodes in perennial crops.

Preference is given to using the compound of the formula (I-I) for controlling soil-dwelling plant-damaging nematodes in annual crops.

5    Preference is also given to using the compound of the formula (1-2) for controlling soil-dwelling plant-damaging nematodes in perennial crops.

Preference is also given to using the compound of the formula (1-2) for controlling soil-dwelling plant-damaging nematodes in annual crops.

The    phytoparasitic  nematodes  include,  for  example,  Pratylenchus  spp.,  Radopholus  similis,

10    Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globoderaspp., Meloidogyne spp., Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp., Belonolaimus longicaudatus, Mesocriconema xenoplax, Tylenchorhynchus spp., Rotylenchulus spp., Helicotylenchus multicinctus, Paratrichodorus spp., Paratylenchus spp., Criconemella spp., Hoplolaimus spp., Scutellonema spp., and Dolichodorus spp ..

15    Perennial crops are to be understood as meaning citrus fruit, pomme fruit, stone fruit, grapevine, tea, almonds, nuts, coffee, tropical fruit, soft fruit, ornamental plants, lawn and olives.

Annual crops are to be understood as meaning vegetable, tobacco, melons, beet, sugar beet, cereals, com, cotton, soya and potatoes.

Growth-regulating insecticides such as the compounds of the formulae (I-I) and (1-2) generally act

20    slowly and have no killing effect on adult animals. Owing to the slow onset of action and a short half-life in the soil, a nematode-controlling application against soil-dwelling nematodes was not expected to be feasable. It is highly surprising that the compounds of the formulae (1-1) and (1-2) are, after foliar application, suitable for controlling nematodes in spite of the slow onset of action.

The crops to be protected, which have only been described in a general manner, are specified in a

25    differentiated and more in-depth manner below. Thus, with a view to application, citrus fruit is to be understood as meaning, for example, oranges, clementines, satsumas, lemons, grapefruits, cumquats, mandarines,

furthermore pomme fruit, such as apples, pears, but also stone fruit, such as peaches, nectarines, cherries, apricots,

furthermore grapevine, olives, tea, and tropical crops, such as, for example, mangoes, papayas, figs, pineapples, dates, bananas, durians, passion fruit, kakis, coconuts, cacao, coffee, avocados, lychees, maracujas, guavas, sugar cane,

moreover almonds and nuts, such as, for example, hazelnuts, walnuts, pistachios, cashew nuts, brazil

5    nuts, pecan nuts, butter nuts, chestnuts, hickory nuts, macadamia nuts, peanuts,

additionally also soft fruit, such as, for example, blackcurrants, gooseberries, raspberries, blackberries, blueberries, strawberries, red bilberries, kiwis, cranberries.

With respect to the use, ornamental plants are to be understood as meaning, for example, cut flowers,

such  as,  for  example,  roses,  carnations,  gerbera,  lilies,  marguerites,  chrysanthemums,  tulips,

10    daffodils, anemones, poppies, amaryllis, dahlias, azaleas, malves, gardenias, euphobias,

furthermore, for example, bedding plants, potted plants and shrubs, such as, for example, roses, hibiscus, chrysanthemums,

furthermore, for example, bushes and conifers, such as, for example, fig trees, rhododendron, spruce trees, fir trees, pine trees, yew trees, juniper trees, but also lawn, such as, for example, golf lawn,

15    garden lawn.

With respect to the use, vegetables are understood as meaning for example fruiting vegetables and inflorescences as vegetables, for example bell peppers, chillies, tomatoes, aubergines, cucumbers, pumpkins, courgettes, broad beans, climbing and dwarf beans, peas, artichokes, maize;

but also leafy vegetables, for example head-forming lettuce, chicory, endives, various types of cress,

20    of rocket, lamb's lettuce, iceberg lettuce, leeks, spinach, Swiss chard;

furthermore tuber vegetables, root vegetables and stem vegetables, for example celeriac/celery, beetroot, carrots, radish, horseradish, scorzonera, asparagus, beet for human consumption, palm hearts, bamboo shoots, furthermore bulb vegetables, for example onions, leeks, Florence fennel, garlic;


25    furthermore Brassica vegetables such as cauliflower, broccoli, kohlrabi, red cabbage, white cabbage, curly kale, Savoy cabbage, Brussels sprouts, Chinese cabbage.

With respect to the use in cereal crops, cereal is to be understood as meaning, for example, wheat, barley, rye, oats, triticale but also maize and millet.

Particularly preferred are, from the family of the
 

Pratylenchidae,

Radopholus brevicaudatus Radopholus capitatus

5    Radopholus cavenessi Radopholus clarus Radopholus citrophilus Radopholus crenatus

Radopholus inaequalis 10 • Radopholus inanis

Radopholus intermedius Radopholus laevis Radopholus litoralis Radopholus magniglans

15    Radopholus megadorus Radopholus nativus Radopholus neosimilis Radopholus nigeriensis Radopholus rectus

20    Radopholus rotundisemenus Radopholus serratus Radopholus similis Radopholus trilineatus

Radopholus triversus

25    Radopholus vacuus Radopholus vangundyi Radopholus vertex planus Radopholus williamsi

Pratylenchus coffeae

30    Pratylenchus brachyurus Pratylenchus fallax Pratylenchus goodeyi Pratylenchus vulnus
 
in citrus fruit, tropical fruit, e.g. bananas, coffee, coconuts, avocado; tea, ornamental plants, lawn

in tropical fruit, e.g. bananas, coffee, pineapples, nuts, e.g. walnuts, ornamental plants, e.g. roses; strawberries

Pratylenchus penetrans



Particular preference is furthermore given to
 

Xiphinema americanum

5

Xiphinema diversicaudatum

Xiphinema index

Longidorus elongatus

Meloidogyne incognita

10    Meloidogyne hapla Meloidogyne arenaria Meloidogyne javanica
 

in crops such as grapevines, soft fruit, e.g. strawberries, conifers, e.g. pines, ornamental plants, e.g. roses, stone fruit


in crops such as soft fruit, e.g. strawberries, shrubs, perennial crops

in crops such as grapevines, peanuts, sugar cane, tomatoes
 

Tylenchulus semipenetrans (Family: Tylenchulidae)

15

Belonolaimus longicaudatus (Family: Belonolaimidae)


Mesocriconema xenoplax


in crops such as citrus fruit, e.g. oranges, grapefruits, lemons, mandarines, grapevines, olives, tropical fruit, e.g. persimmon

in crops such as citrus fruit, e.g. oranges, grapefruits, lemons, mandarines, soft fruit, e.g. strawberries, lawn, conifers, e.g. spruce

in crops such as grapevines, nuts, e.g. almonds, walnuts Rotylenchulus reniformis in crops such as tropical fruit, e.g. bananas, pineapples, papayas, melons, passion fruit, coffee, in citrus fruit, e.g. oranges, grapefruits, ornamental plants, e.g. gardenias, euphorbias
 

Helicotylenchus multicinctus    in crops such as tropical fruit, e.g. bananas

25    All plants and plant parts can be treated in accordance with the invention. In this context, plants are understood as meaning all plants and plant populations such as desired and undesired wild plants or crop plants (including naturally occurring crop plants). Crop plants can be plants which can be obtained by traditional breeding and optimization methods or by biotechnological and recombinant

methods, or combinations of these methods, including the transgenic plants and including the plant varieties which are capable or not capable of being protected by Plant Breeders' Rights. Plant parts are understood as meaning all aerial and subterranean parts and organs of the plants such as shoot, leaf, flower and root, examples which may be mentioned being leaves, needles, stalks, stems, flowers,

5    fruit bodies, fruits and seeds, but also roots, tubers and rhizomes. The plant parts also include crop material and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, slips and seeds.

The treatment according to the invention with the active compound, of the plants and plant parts, is

effected  directly  or  by  treating  their  environment, habitat or  store  using  conventional  treatment

10    methods, for example by dipping, spraying, fumigating, fogging, scattering, brushing on, injecting, and, in the case of propagation material, in particular seeds, furthermore by coating with one or more coats.

As  already  mentioned  above,  all  plants  and  their  parts  can  be  treated  in  accordance  with  the

invention. In a preferred embodiment, plant species and plant varieties which are found in the wild or

15    which are obtained by traditional biological breeding methods, such as hybridization or protoplast fusion, and parts of these species and varieties are treated. In a further preferred embodiment, transgenic plants and plant varieties which were obtained by recombinant methods, if appropriate in combination with traditional methods (genetically modified organisms) and their parts are treated. The terms "parts", "parts of plants" or "plant parts" were described above.

20    Plants which are especially preferably treated in accordance with the invention are those of the varieties which are in each case commercially available or in use. Plant varieties are understood as meaning plants with novel traits which have been bred both by conventional breeding, by mutagenesis or by recombinant DNA techniques. They may take the form of varieties, biotypes or genotypes.


25    Depending on the plant species or plant varieties, their location and growth conditions (soils, climate, vegetation period, nutrition), superadditive ("synergistic") effects may also occur as a result of the treatment according to the invention. Effects which exceed the effects actually to be expected are, for

example, reduced application rates and/or widened activity spectrum and/or an enhancement of the

activity of the substances and compositions which can be used in accordance with the  invention,

30    better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salinity, increased flowering performance, facilitated harvest, speedier maturation, higher yields, higher quality and/or higher nutritional value of the crop products, better storability and/or processibility of the crop products.

The preferred transgenic plants or plant varieties (plants or plant varieties obtained by means of genetic engineering) which are to be treated in accordance with the invention include all plants which, by means of the recombinant modification, have received genetic material which confers particularly advantageous valuable traits to these plants. Examples of such traits are better plant

5    growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salinity, increased flowering performance, facilitated harvest, speedier maturation, higher yields, higher quality and/or higher nutritional value of the crop products, better storability and/or processibility of the crop products. Other examples of such traits which are particularly emphasized

are an improved  defence of the plants against animal and microbial pests such as insects, mites,

10    phytopathogenic fungi, bacteria and/or viruses, and an increased tolerance of the plants to specific herbicidal active compounds. Examples of transgenic plants which are mentioned are the important crop plants such as cereals (wheat, rice), maize, soybean, potato, cotton, tobacco, oilseed rape and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with particular emphasis on maize, soybean,
potatoes, cotton, tobacco and oilseed rape. Traits which are particularly emphasized are the increased

15    defence of the plants against insects, arachnids, nematodes and slugs and snails as the result of toxins formed in the plants, in particular toxins which are produced in the plants by the genetic material of Bacillus Thuringiensis (for example by the genes CryiA(a), CryiA(b), CryiA(c), CryUA, CrylllA,

CryiiiB2, Cry9c, Cry2Ab, Cry3Bb and CryiF and their combinations) (hereinbelow  "Bt plants"). Traits

which are also particularly emphasized are the increased defence of plants against fungi,  bacteria and

20    viruses by systemic acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins. Traits which are furthermore especially emphasized are the increased tolerance of the plants to specific herbicidal active compounds, for example imidazolinones, sulphonylureas, glyphosate or phosphinothricin (for example "PAT" gene). The specific genes which
confer the desired traits can also occur in combinations with one another in the transgenic plants. Examples

25    of "Bt plants" which may be mentioned are maize varieties, cotton varieties, soybean varieties and potato varieties sold under the trade names YIELD GARD® (for example maize, cotton, soybean), KnockOut® (for example maize), StarLink® (for example maize), Bollgard® (cotton), Nucotn® (cotton) and
NewLeaf®  (potato). Examples of herbicide-tolerant plants which may be mentioned are maize varieties,

cotton varieties and soybean varieties which are sold under the trade names Roundup Ready®  (glyphosate

30    tolerance, for example maize, cotton, soybean), Liberty Link® (phosphinothricin tolerance, for example oilseed rape), IMI® (imidazolinone tolerance) and STS® (sulphonylurea tolerance, for example maize). Herbicide-resistant plants (bred conventionally for herbicide tolerance) which may also be mentioned are the varieties sold under the name Clearfield® (for example maize). Naturally, what has been said also

applies to plant varieties which will be developed, or marketed, in the future and which have these genetic

35    traits or traits to be developed in the future.
 

The active compounds can be convened into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspoemulsion concentrates, natural and synthetic materials impregnated with active compound, and ultrafine encapsulations in polymeric materials.

5    These formulations are produced in the known manner, for example by mixing the active compound with extenders, that is, liquid solvents and/or solid carriers, optionally with the use of surfactants, that is, emulsifiers and/or dispersants and/or foam formers.

Suitable extenders are, for example, water, polar and unpolar organic chemical liquids, for example

from the classes of the aromatic and nonaromatic  hydrocarbons (such  as paraffins, alkylbenzenes,

10    alkylnaphthalenes, chlorobenzenes), of the alcohols and polyols (which can optionally also be substituted, etherified and/or esterified), of the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, of the unsubstituted and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide).

15    In the case of the use of water as an extender, organic solvents can, for example, also be used as cosolvents. Liquid solvents which are suitable are mainly: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as

chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane

or paraffins,  for  example mineral  oil  fractions,  mineral  oils and  vegetable oils, alcohols, such as

20    butanol or glycol as well as their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulphoxide, and water.

Solid carriers which are suitable are:

for example ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quanz,

25    attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as highly-disperse silica, alumina and silicates; suitable solid carriers for granules are: for example crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, and synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut

shells, maize cobs and tobacco stalks; suitable emulsifiers and/or foam formers are: for example non-

30    ionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates as well as protein hydrolysates; suitable dispersants are: for example lignin-sulphite waste liquors and methylcellulose.

Adhesives such as carboxymethylcellulose and natural and synthetic polymers in the fonn of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids, can be used in the fonnulations. Other additives can be mineral and vegetable oils.

5    It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs and metal phthalocyanine dyestuffs, and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.


The fonnulations in general comprise between 0.1 and 95% by weight of active compound, 10 preferably between 0.5 and 90%, and additionally preferably extenders and/or surfactants.

The active compound content of the use forms prepared from the commercially available fonnulations can vary within wide ranges. The active compound concentration of the use fonns can be in the range of from 0.0000001 up to 95% by weight of active compound, preferably between 0.0001 and I% by weight.

15    Application is in a customary manner which is appropriate for the use fonns.

Use examples

Example l

In 5 replications, in each case 15 vines of the cultivar ,Thompson Seedless 1948" are treated against

soil-dwelling nematodes using a fogger. Here, a tank mix of the active compound (I-2) (SC 240) is

5    applied after foliar application at the state-d application rates with 0.25% of the adjuvant Acitvator 90, in comparison to imidacloprid (SC 550) after drench application by micro-irrigation injection. The water application rate is 75 gallons per acre= 605 plants. Two applications of active compound (I-2) are carried out at an interval of 32 days.

Evaluation is carried out prior to the treatment and 30 days and 60 days after the first treatment by

10    counting the number of nematodes in 500 g of soil.

a)

Active    Application    rate    Activity against Meloidogyne incognita           
compounds    per 605 plants                           
                                       
                Od    30d    60d   
                                   
Imidacloprid    14 fluid ounces    267    171            188       
                                       
Active compound    12.5    fluid ounces    312    140.8            178.8   
(I-2)                                       
                                       
Control    0            342    336            308       
                                       
                                       
                                       
b)                                       
                       
Active    Application    rate    Activity against Mesocriconema xenoplax   
compounds    per 605 plants                           
                           
                Od    30d    60d   
                           
Imidacloprid    14 fluid ounces    1863    808.4            958.4   
                           
Active compound    12.5 fluid ounces    1817    861.2            942.8   
(1-2)                                       
                               
Control    0            1630    1397.6        2083.2   
                                       

c)

                                                               
    Active        Application   rate    Activity against Pratylenchus sp.       
    compounds        per 605 plants                   
                                                               
                                                Od    30 d    60d   
                                               
    Imidacloprid        14 fluid ounces    406    320        319.6   
                                                       
    Active compound        12.5 fluid ounces    826    371.2        454   
    (1-2)                                                   
                                                       
                                               
    Control    0                848    540        646   
                                                               

Example2

Foliar Application of (l-2) to Citrus in Pots for Control of Tylenchulus semipenetrans

Treatments: 15 trees sprayed with (l-2 =Movento), 15 trees sprayed with water (presample each pot); 25 mUtree

5    Protocol:

Add Tylenchulus semipenetrans larvae to all pots. The following day take trees out of greenhouse. Cover top of pot to exclude spray from soil. (l-2) (SC 240) is sprayed in a concentration of 2.6 ml plus 2.5 ml adjuvant MSO (methylated seed oil), (100% active w/v, added to the spray solution at 0.25% v/v) per liter sprac solution. Spray canopy from two sides of trees to runoff with a 2 gallon

10    "Sure Spray" pump sprayer (Chapin Mfg.) using a nozzle that delivers a cone shape spray pattern. Allow material to dry before returning plants to greenhouse. Repeat in 14 days.

For this citrus nematode trial, 5-year old Volkamer lemon seedlings are infested with T. semipenetrans obtained from the field and maintained in the greenhouse (25-32 °C) for use in pesticide trials. Trees used in the experiment are not treated with nematicidal compounds. The

15    seedlings are growing in a 50:50 mixture of Astatula sand (97% sand) and Pro-mix potting mixture in rectangular pots (10xl0x30 em). Trees are irrigated normally, but receive no fertilizer or pesticide treatments other than (1-2) during the experiment. Effects on citrus nematode are evaluated by soil sampling 30 days and 60 days after treatment.

ANCOVA: pf versus treat (First nematode evaluation)

20    Factor    Levels    Values               
    treat    2    0               
    Analysis of Covariance for pf               
25    Source    DF    Adj SS    MS    F    p   
    Covariates    I    12890661    12890661    15.12    0.001   
    treat    I    5665625    5665625    6.64    0.016   
    Error    27    23026066    852817           
    Total    29    41567938               
30                    p       
    Covariate    Coef    SECoef    T           
    pi    0.2656    0.0683    3.888    0.001       

35

    ANCOV A: In pf versus treat           
    Factor    Levels    Values           
    treat    2    0           
5    Analysis of Covariance for In pf           
    Source    DF    Adj SS    MS    F    p
    Co variates    I    46.987    46.987    69.98    0.000
    treat    I    5.563    5.563    8.29    0.008
10    Error    27    18.129    0.671       
    Total    29    68.114           
    Covariate    Coef    SECoef    T    p   
    In pi    0.8075    0.0965    8.365    0.000   
15                       

ANCOV A: pf2 versus treat (Second nematode evaluation)

    Factor    Levels    Values               
    treat    2    0               
20    Analysis of Covariance for pf2               
    Source    DF    Adj SS        MS    F    p
    Co variates    I    37890104    37890104    12.06    0.002
    treat    I    5907691    5907691    1.88    0.182
25    Error    27    84807883    3141033       
    Total    29    128580451               
    Covariate    Coef    SECoef    T        p   
    pi    0.4553    0.131    3.473    0.002   
30                           
    ANCOV A: In pf2 versus treat               
    Factor    Levels    Values               
    treat    2    0               
35    Analysis of Covariance for In pf2               
    Source    DF    Adj SS        MS    F    p
    Co variates    I    32.587    32.587    32.61    0.000
    treat    I    2.982    2.982    2.98    0.096
40    Error    27    26.980    0.999       
    Total    29    61.015               
    Covariate    Coef    SECoef    T        p   
    In pi    0.6724    0.118    5.711    0.000   
45                           
 
Citrus nematode 30 and 60 day post-treatment

    3500~    ~       
    ------------------------------           
    -    Untreated control       
•g    c:::::J    Movento       
    3000           
'?E    2500           
u               
g               
.....               
I"0    20001500           
c               
01               
l!    1000           
•c:               
!e    500           
..::I,               
    0           
               
Pretreat    Post treat    Post treat2

(Movento =1-2)

Tylenchulus semipenetrans raw data (juvenile and male nematodes per  100 cm2  soil.  Pi is initial

population before treatment, Pf is final population at one and two months post treatment).

Treat Pi    Treat Pf    TreatPf2    No treat Pi    No treatPf    No treatPf2   
                                               
1625.0                638.16        4122.22    1387.5    3272.73        660.71   
125.0                87.21        175.44    2237.5    733.77        6031.91   
                                               
                                               
2190.0                1803.37        1409.84    2980.0    1850.57        4348.21   
                                               
4250.0                1402.78        3205.36    7650.0    2308.22        5977.78   
210.0                60.81        92.59    400.0    43.48        44.44   
                                               
2490.0                1448.86        1481.13    100.0    269.23        428.57   
                                               
250.0                86.21        551.02    530.0    1776.12        3084.91   
                                               
125.0                54.35        531.25    7000.0    1664.63        4812.50   
                                           
2412.5                168.83        181.82    787.5    1306.67        2336.73   
                                           
                                               
2100.0                519.74        380.95    3760.0    3080.25        2314.81   
                                           
                                           
1700.0                534.25        338.71    6675.0    4981.71        3564.81   
                                           
9237.5                1440.00        1207.55    50.0    58.82        106.38   
                                           
4180.0                2753.33        7807.69    1050.0    1954.55        1442.31   
400.0                336.84        347.46    25.0    23.81        90.91   
4250.0                708.33        1908.33    850.0    1739.13        1780.70   
                                               
Example3

The experiment is carried out in a shade house at a temperature of around 78 F (76-80 F). The experiment is conduced in a complete randomize design with seven treatments and six replications. 6 inch pots are filled with I ,500 g of steam pasteurized (194 F for 2:30 h) field soil per pot and a 4

5    weeks old tomato cv. Rutgers transplant is added. The soil is an Arredondo fine sand with ca. 92% sand and I% om. The soil is taken from a site with no history of root-knot nematode infestation.

The first preventive treatments of Vydate CLV and (1-2) (SC 240; adjuvant: Dyne-Amic (a blend of nonionic and organosilicone surfactants and MSO), 99% active w/v, added 0.25% v/v) are applied as

foliar spray.  Fosthiazate 900 is applied as a soil drench in 40 gallons water per acre. The second

10    preventive application of Vydate and (1-2) are sprayed over foliage 7 days after I" treatment. The soil is inoculated by adding 5,000 eggs/pot of Meloidogyne arenaria one day after the 2"d treatment. The curative treatments of Vydate and (1-2) are applied as a foliar spray on 21 and 28 days after inoculation with Meloidogyne arenaria.

All (1-2) and Vydate treatments are applied in 40 gallons of water/acre by a C02 pressurized sprayer

15    with a single 8003 VS TeeJet noozle. The tomato plants for each treatment are lined up in a row with the spray directed over their foliage until noticeable drip.

78 days after the I" treatment the plants are harvested. Each root system is evaluated for the percentage of root-knot nematode galling and eggs per root system•. A I to 6 scale is used for

estimating the number galls per root system as follows:  I =no galls on the root system; 2 = I 0%; 3 =

20    II to 30%; 4 = 31 to 70%; 5 = 71 to 90%; 6= I 00% root system galled. Following the determination of percentage of galling the roots are processed in a bleach solution to dissolve away the gelatinous matrix surrounding the eggs. Individual eggs are collection on a 500 mesh sieve and poured into a counting dish for determining their numbers.
 
RESULTS

The nontreated uninoculated control plants have no galling and the roots are white and healthy in appearance (Table I). Nontreated inoculated plants have darkened, rotting roots that showed visual signs of decay. Galls and egg masses are numerous and there are many large coalesced galls.

5    Plants treated with fosthiazate, except for one plant out of six, have darkened decaying roots with numerous galls and egg masses. Large portions of the root system have coalesced galls. Their general appearance is similar to that of the. nontreated inoculated plants. The root system of plants treated with (l-2) via a foliar spray as a preventive treatment have numerous egg masses and

coalesced galls; roots are dark in appearance but the number of egg masses appearless than that in the

10    non treated inoculated control plants. Roots of plants treated with Vydate foliar preventative treatment have numerous coalesced galls, but roots are whiter in appearance and rotting is much less apparent. There are less egg masses.

Roots of plants treated with (l-2) as a curative treatment have little darkening or rotting appearance.

They have more fibrous roots and overall their appear to be a larger root system.  Three of the six

15    plants have little gall coalescing and there is an obvious appearance of fewer egg masses. Plants treated with Vydate as a curative treatment have more coalesced galls than the (I-2) treated plants. There is little appearance of rot and there are fewer egg masses.

Because there appeared to be fewer egg masses on tomato roots of some treatments the decision is made to count individual eggs to make a more quantitative determination among the treatments.

Table I.  Average root-knot nematode galling indicies and number of eggs per tomato root system following treatments of fosthiazate, (l-2), and Vydate.


Treatment1    Rate    Galling    Number
            index 1    of eggs/root system
5                78 d after first treatment
               

        I. Untreated (without nematode)        0.0    0   
        2. Untreated (with nematode)        6.0    727.820   
        3. Fosthiazate -  preventive    6.01bai!A    5.3    453,500   
10        4. Movento (l-2)- preventive    0.0785 lb ailA    6.0    421,600   
        5. Vydate -  preventive    4.0 lb ailA    5.2    333,500   
        6. Movento (1-2)- curative    0.0785 lb ail A    4.5    141,000   
    7. Vydate -curative    4.0 lbai!A    4.3    60,250   
                       
15    1               
        --Subjective root-knot nematode gall rating scale I to 6 where I =no galls on root system;   
        2 = 10%; 3 =II to 30%; 4 = 31 to 70%; 5 = 71 to 90%; 6 = 100% of root    system galled.   

Data are means of four replications.  Means within a column followed by a common letter are not different according to Duncan's multiple-range test

(P. 0.05).


Patent Claims

J_    Use of the compounds of the fonnulae (1-1) and (1-2)



for controlling soil-dwelling plant-damaging nematodes in annual and perennial crops.

5    2. Use of the compounds of the formula (I-I) according to claim I for controlling soil dwelling plant-damaging nematodes in wine.

3.    Use of the compounds of the fonnula (I-I) according to claim I for controlling soil dwelling plant-damaging nematodes in vegetables.

4.    Use of the compounds of the fonnula (I-I) according to claim I for controlling soil dwelling

10    plant-damaging nematodes in citrus.

5.    Use of the compounds of the fonnula (1-2) according to claim I for controlling soil dwelling plant-damaging nematodes in wine.

6.    Use of the compounds of the formula (1-2) according to claim I for controlling soil dwelling plant-damaging nematodes in vegetables.

15    7. Use of the compounds of the fonnula (1-2) according to claim I for controlling soil dwelling plant-damaging nematodes in citrus.

8.    Method for controlling soil dwelling plant damaging nematodes characterized in that compounds of the fonnula (1-1) according to claim I are foliar treated.

9.    Method  for  controlling  soil  dwelling  plant  damaging  nematodes  characterized  in  that

20    compounds of the fonnula (1-2) according to claim I are foliar treated.

-    18-

Newsletter

Join our newsletter for CIPIT news through subscriptions!

SEND

Social Media

    

Contact Us

TEL : (254) 703 034 612