slide 1

Back to the List of the Granted Patents                                                                         Click here to download KE000375 PDF

(45) Dato Df g"'11t: 08/03/2010

(IZ)YATENT

(!l)bt.CL8:  H02J7/00

                   
(ll]Ap~lic:ation Nunber:KErr/ZOOS/000749   

(84)WONo.    WO  2007roM'J'Ii)AL
                02/0812007
(2Z)Fllli.gDa1e:    24/lQ/2006
           
(Jl)Pri(lrityNumber:    11/341,770   

3l)Date: 27/01/2.[)06  

(33) Country:Uii

(73) <Mu.er(s): JD HOLDING INC of Scotia Ce:rtre, ~th Floor, P. 0. BOX 28011, George Tow:t, Grand Cl)lllan, Cayman islands

(11) lllvlmtoT(~) HENNESSY, Timothy, David, John

(74).Agm1/address for mri'E8pondence: WattanAssoclates, P. 0. Box 8925-00100, Nairobi (S4)'Dtl!!: TELECOMMUNICATIONS SYSTEM INCORPORATING A VANADTIJM

REDOX BATTERY ENERGY STORAGE SYSTEM.

(51)    A teleeomm.uniC8tion system incap[)rates a vanadium redox battery energy st()rage

Abitmd:    system. The vanadium redox: battft)' energy storage system receives Bnd is charged by DC power. Upon power internptioR, telecommunication equlpment reliei on the vanadium redrut battBy enE!I'gy ~hrfge s:}'W!m to receive DC power. A eharl)M/re~tifier :monitors ~i"veJ AC powIn' to d..,tQrmine if :on AC power

interruption JS occuring and initialesDC p~ transmission from the: v;uuu:HUI!l redox battery energy oorage system to tbe telecommunication equipment
 

TELECOMMUNICATION SYSTEM INCORPORATING A VANADIUM

REDOX BATIERY ENERGY STORAGE SYSTEM

Technical Field

[ODIJ1)    This invention relates ta vanadium redoK battery energy storage systems

and telecommunication equipment.

Briaf Dcocription of tho Drawings

[0002]    A more particular description of lhe invenllon briefly desCiibe<l above will be

rendered  by  reference  to  the  lilppended  drawings.   Understanding  lhat tlleae

drawings only provide Information ~ncamhg typical embodiments of the invention

and iira not therefore to be considered limillng of its scope, 111e invention will De

described and explained with additional epeclicity and detail through the use of the

accompanying drawings, in which:

[OClOS] Figure 1 is a bklck diagram of an embodiment of a vanadium redox battel)' energy storage :sy.rtem;

[OClM]    Figure  2  i8   a  block  diagram  illustrating "'an embodiment  of  a

telemmmunir;;ation ~;yatem;

[0005]    Figure  3  is  a.  block  diagram  lllustraUng  an  embodiment  of  e

telecommunication systsm; and

(DOOB]    Figure  4  is  a  flow  diagram  illtBtra11ng  a  methodology  o1' the  present

in\'ention.

QW:!iled Descriotion of Prafemad Embodjmenl!

[UOUT]    Tne presently preferred embcdlmsnts cl'the preijent invenUon will b: be6t

undantood by reference to the drawings, wllerein lika parts are designated by like

nurrel'l!lla throughout.   It wBI  be  readily  urderatood that the «:lt~mponenls of 1he

~reeant Invention, as generally described and illustrated in the figures herein, coukl
 
be arra~ge!l and designed In a wide wriety of different configura.tione. Thus, the follaWng more de1alled de9cr1ption of the enbodiments of the apparatus, syatem, and method Of the present lnventton, as ~r6eentecl in Flguree 1 through 4, is not intendecl to limit the tCXIpe of the invention, as claimed, but is merely representative

gl preeenUy preferred embodiment$ oftha inrention.

[110~8]  The Dhrases 'connectedto." 'coUDBdIll,'and "in communmon with" refer

to  11ny form  of interaction  between  two  or  moro  entitfee.  inoluding  meohonlool,

eleetlleal, magnetk:, fluid. and thermallntera::ll'on. Two components may be coypJsd tg. each other even thi'Ollghthey are not In dlrec! corrtad _wllf'l f!ach other. The term

"ab.Jtllng~ refers to items that are In direct pllysical oontact with each oUler, although

the Items m!!fV not necessarily be attached together.

[000&)    Naw leehnologlcallnnovatlons ard EJ'Ier-increaslngdemands ln electrtcal

consumption have  made aolar and wind.  p<ffll!lir plant& a viable option.   Energy

storaae systems. sucll as rechargeable batteries. are an essential requirement for

il'motep()V{cr ~rna that l:lil'supplied by vrird turbine gcneratore or phcttrvclte~ic

arrays.  Energy Btorage systems are furthEr' 11eeded to enabki energy arbitrage for

selling and buying power during off..peak conditions.

[DCI1 0] Vanadium red:J:x energy storage s)Sbm!l ( hereinafter "VRB-ESSj have rsceive::l favorable attention because they promise to be IneXPensive and posse-is many features that provide for tong life, fleldble design, high reliability, and I()W

tperation  and  m~:~intemmce costs.  The va11s:llurn  redm;  o~rgy storage s~

1'9lilMI m a pumping flow Rysfsm to pn.;._ tho onolyta mnd ~atholyte saluHr.ns through

tfle ~115. In operating a vanadium redox: =ne~gy 6torage e.yem, flew ratfl'&,Internal

tamperaturN, pressure, charging and discharging times ere all factors that influence

power output

(0011]    A significant advantage of a VRB-ESS le that It only tatea d1e same tlrre

pt~riod hi rvcharge the VRB-ESS as H: does to discharge ~- Conventional lead acitl

batterBe may take over five fimee tneir diac~erge rating to redlarge.  Thus, a fClur-

hour rated leac:l acic:l battery may require 21) i'IGJ18to recharge.  In 11 24-hour p~triod,

& fwr•hl)ur rated VRB-ESS wiB be able to fuly dl&eharge and ctlarge three times

ven~.~s jtJst one charoe with a lead acid battay,  In a 24-hour ceriod. a lead aci::l

bdtef'Jmay be ~C>Ie to or.ly doiNer powerhr fourhcura withal"')'certainty.  A loect

a«:id  tattery r18ks power delivery if repeatej faults occur on a grlcl after an initial

disdlarge. W~h a VRB-ESS, power delivery is mora available:.

[D012J    Repeated tleavy diedJarges also red1.1re the life oftha leed acid battery.  A

VRB-ESS  does  not  degr8:1e  like  a  laad  acid  battery  after  muttiple  ueea.

Fllrdlerrncre, determ!ni~ the EMIIlable etate-01'-dlarge(SOC) of a lead acid battery

requimt til at it be dischaJQed under load.  A. VRB-ESS Is able to provide an ab::ICIILIIe

SDC. nf ibl gv_giJabll'!enl'!fgVat ell iii'MR sm. w•ll AI bA:ing mnl'l!!AffiriAnt thAn I6Mid ~id

batmrbe.

[0013) Talaoommunication equipment, su~h as microwave, radio, and lelevlston trJrBmitler& for cellular communicatit11, amlfrn broadcasts, talellisbn broadcasts, wlrelels lntemst aa:au, an::l so forth •re c:llsposed on towers 1o enhance
tnllr&rni~&ion coverage.   Telecommunkatio11  !9Uipment is relied  upon to  provide

)!i"trtlal oommunicalions prvlcos and must include a constant power supply.  A

bilti:!IY Is ofte11 used to compensate for any interruption In arJ AC power source.

Givt-n 1M advGn~- o1 1:1  VRQ:.;:Ss w~~;r locld  odd  bQ&.rioo,  it would  bo on

~:~liw.ll(.;WfJ3/1t ln the art to Incorporate a VRB-1!~ with a telecommunlca.Uon 5)'5lem

[00141    A vanadium  redr»:  battery !Dim stprage system includes all slze&  of

varsdun  redox batteries  (VRB)  In bottl  ataoll,Jie  amp  haur rating  end energy

sto~ duration in  hours.   The VRB-ESS Includes storage .eservoirs to hold

vanadium electrolyte, an energy conwraiCln rrachanlsm defined u  a cell, a piping

and pumping flow system, and a power converslcn S}Stem (PCS).

[0()16J    lhe VRB-ESS Is In eleQII!oal O()mD11nlgat!on wilh a control aystem 1het

rnoliltoll .and controls aspects of the performance cl1be component. of the VRB-

w__ The control system may be implemented in any number of ways but, in one

embodiment, lnciudos a control program running on A  auitabla platfonn, auch a

pfO!ijrammaiJie logic controller, mbopf"t~CMSC~r, or the like. The control system et~ntrde and manages the perfonnance of the VRB-ESS in such a manner ae to optimally meet the fundarnen1al parameters of effiCiency and safe operation. The con1rcl system further provides for self pro1Eetion in 1he e'tlentof an external or lntemal fault or failure of a critical component, acanle controlled output as determined by dynamic load requiremerrts or preset perfonnance tht"BSholds, and
ambi111t conditions prevaHi~ !tom time to lrne in each eycle.

[0018]    A VR9-(;SS optimally controls thE~ f)CM'Etroutput,oharging and discharging

times, and efficiency of a VRB-ESS or any system that uses vanadium based alertrotyte solution as the anergy storage 0011ponent of a bmtlery. There are several key parameters which Ga"'trolthe opera1ior1 of a VRB. For any given conoentratior1 of elei:lrotyte solution, the key parameters lnclu::te temperature, 'tlollmetricflow rates, preasure wHhln and across the cell stacks, and state of charge of the electrolyte ami lood as evfdenced by the current draV't'nor wpplled. ]Jlo load may be een as

_egsitiYe or n~ative. !!Jteaatlve. then the load is actually supplvjpg oowfu to tjte

VB§.. All of lh~ parametero ohongc In 11  d:pnamto manner cxmtinuoualy and wry

'Nitl'1ege.
[G0l1J    In order  to optimize the  overall Pf'rlormanoeof the VRB, the preeertt

inven1Jcn employs a control aygtam that lr\dudes. algorithms With control strategies.

The cxmtrolsy5tem ai\OW5 the VRB-ESS to op:~rata In an automatic mode to ensure

thai tile hlgheat poaslble etndency Is achhv&d aa measured fran the  allerne.tirg

clJrteDt input to alterretlng current output 11r1 a rttund-tr1p basis.  The control system

adJusts acc:crtlfng to the aQB of the VRB-ESS or as dynamic changes occur In anv of

tile CGrnponenta.  The oontrol cyel&m proWIEia optfmimd affiolenoy by controlling tl1e

dlergfng and dleoharginljl, pump flow ra!el, and associated pr"eBSUras wlthi"l Ue

VRB-ESS.

[0018]    R.eferrlng to FQure 1, a block cflll{lrsm of a VRB-ESS 10 for use with tlle

pr&a'ltimenficnle ehovm.  A suitable enellYslorage system Ia ltiqUired for remote

pcnll'er  system applicatiai'\SIthat are &Upplied by  either photovoltaic iiiT&Y5 or wl11d

turhlre generators.   For such appllcatlom, IW~ life-cycle coat &fld el~ a1'

oPeration are maior reouternente.

[80iq    The VR9-ESS  10 include&  on•  C)r more  oolle  12  that  oaoh  inoludo a
repg.tv~ compartment 14 with a negative electrode-16~nd a positive ccmpartrneilt
18 Wtll  11  posmve  electrode 20.   Suitable eteclrodes  include any  number  of

comp:>nenb  known  irt  the  11rt  and  may  include  electrodes  manufactured  in

accordance  with the teachings of  U.S.  Patent No. 5,886,212,  which  is  h~relly

Incorporated by reference.   The  negative mmpartment 14 Includes en eno'Yte

eQI11tlon 22 In $leotrical commumcsUon with ttc negatlve electrode 16.  Tne anolyle

st»lution 22 Is an electroM:e oontainino ~~opecifl!d n.dox ioos which All'&in a no.du~

u~Eirie and ure to be oKidi~d during the djgd1e~ prooo~ of s ocl'12, or 1!11'0in en

acldl2ed  state ancl are tu be reduced dullrg the Cl1arglng process or e cell 12, or

whir:h are a mixture of tnese latter reducecl ioll& and ions to be reduced.  By way rlf

exanple, In a VRB-ESS 10 "the charge-discllarge redox reaotia"'occurring at tl'le

negative electrode 16 In 1he anolyte iOiutlan 21 It repreaented by Equation 1:

Eq. 1

[CIOZ1J    Ttut posltlve compartment 18 contains a catholyte solution Z4 in electrioeJ.I

communication with the positi'.leelectrode ~0. The catholyte solution 24 Ia an

BlleWtlryte containing specified redox ions whCfl are in an oxidized state and are to

ba redue8d during H-ID di~:nge praeeu of a <»1112, or :ltQ  in a reduced stat& and

are to be oxidized during the charging PfQCeSI of the cell 1z. or which are a mixture

oftllese ox.idized ions and ions to be oxidizEd. Byway of example, in a VRB-ESS 10

tt'lecnar~lscharge redox reaction occurrirg at the positive electrode 20 in the

catlldyte OOIUIIOn 241& repmeented 1>y Equmon 2:
[GOZ2J    v" =v" • e'    Eq. 2

[ll023J    Till! anolyte and catholyte solutions 22, 24 may be prepa.Nd in accordam:e

With  the teachings of  u.s. Patent  Nos.  4.786,567,  6, 143.443, 6,468.686.  and

6,582,614, whid1 are hereby incorporated bt reference, or by ott1or teohnlquoo well

kllcwn i1 the art.  The anclyte solution 22 IBfeJS to an eledrolyte containing specified

redo>e Ions wlllch are In a reduced slate alld S"e to be Clddlzed durtng the dlscherge

pro~ of 1!1 redox battery, or are in an oxidlzscl Ute and are to be raduoecl during

tfle dlarging process of a redox battery, or which are a mbdure of these letter

redllcecl  lens and lons to be reduced.   Th9 catholyte so!u11on 24  refers  to an

eled.rolyte coA1B.Ining epectfled redox lone vrhlctl are ln an mdd"~md state and are to

be redl.l:ed durinQ the dlsdlarue process of • .edo< baHe!ll. or""' in a reduced state

and ana to be QMidized during tho charging prooeqa gf tho r'Jd(IX battmy, or which are

a mbcture of these oxidized ions and ions to be oxidized.  Further, ~ueoue NaOH is

not in::llJded within the ecope of anolyte solution 22, ai"Kt aqueous HCI is not included

within the scope ot a catholyte solution 24.  11'1 one embodiment, the anoJyte solutiol'l
 

22 is 1M to 6M H:zS04 and Includes a stabilizing agent In an amoLilt typically in the

ronge of from 0.1 to 20 wt %, and the cath~esolutlon 24 is1Mto 6M H,S04 •

[0024) Each cell 12 includes an ionically conducting separator 26 disposed bet\Neen the poeltJve and negative comparbnents 14, 18 and In contact wtth the anolyte and ca"Hlolyte "olutiona 22, 24 to provide lonio communication therebotwoon.
rre sepal!ltor 26 prevents the transpo~ of water, vanadium. and sulfate ions.  The

aeparatcr 26 serves as a proton exchanee membrane and may be embodted aa a

selembn, new selemion, flemlon, or nafion membrane.

(0025]    Each cell 12 may further Include a SOC sensor 27 to measure a current

soc 'forthe corresponding cells.  The SOC senaolll 27 are read and the SOCa

aggregated 1o detennlne the SOC of the VRB-ESS 10.  The SOC for the VRB-ESS

1o may be detennined during charging or discharging.

(0028]    .AddHional anolyte solution 22 is held in. an emolyte rc:servolr 26 that is in

fluid communication with the negative compartment 14 through an anolyte aupply

line 30 and an anotyte return line 32.  The anolyte reservoir 26 may be embodied as

a tank, bladder, or other container known in the art  In one embodiment, 1h.e anolyte

reservoir 28 may be a plastic-sealed, double-walled tank.  The anolyte supply Hne 30

may communicate with pump 36 and heat exchanger 38. The pu~nables fluid

movement of the anolyte solution 22 through the anolyte reservo~ 26, supply line JO,

negatiVe compartment 14, and retum line 32.  The p1.111p 36 has a variable speed to

allow Wlriance in tho generated flow rate. The ht:rat exchanger 38 transfers generated heat from the anolyte solutio11 22 to a fluid or gas medium. The pump 3E

and heat exchanger 36 may be selected from any number ot known, suHable devices.

[0027] '"l'hB supply line SO may inolude one or morl!l eupply line vatves 40 ln~Ma~Hml the vdumtric flow of anolyta ao\uUon. The return line 32 may inplude ona o~
retum line valves 44 that control the retum vt~ll.metnc now.

(tl028] Similarly, additional catholyte solution 24 is held in a cstholyl:e reseJVoir 4B that II In fluid communicatlcn wiU1 the pooitife compartment 1S tttrough a cetholyte
supply lne 48 and a catholyte return nne 50.  lhe cathoMe reservoi 46 may be •

de,.;ce.    Catholyte supply  Une 48  may communicate w~h pump 54 and teat

e:cd'IEI~ger 56. The pump 54 may b8 a variebB speed pump 54 that enablee flow of the e&tho\ybt scii.Jtlon 22 through lhe catholyte raseMJir 46, eupply line 48, poeltiw compartment 1B, and retum line 50. Sup,:Jiy line 48 may also i'lcludesupply lire valve 60, and return line SO may Include retum ltrle val\18 62.
[OOZSJ    Th6 rtegEdive and positive electro:les 16, 2.0 are In eBc:trtal communloaticn

witll  a paM!r 11oume 84 and a bad 68.  A. power source switch. 68 Is disposed In

setf'cl llelwelen the pO"MJr eourcc 04 e~nd mdl ncglltlvc c~ctroda 1a, Uk.ewbe; a load swimh 70 is dlapQ89d in Belies betNeen tha load 66 and each negatiw electrode 16. One of~ill il the artwlll awredatethat alternative drcuit layouts are p:JSSII:lfe, anti the embodiment ol Figure 1 Is pro'Jidedfur HI\JStrii1MII purposes only a;s thie disclosure may apply tc any combination ~ catholyte..an~yte ool!t forming a
VRB-ESS.

[003(1)    In chmglng, the ptmer scun;e swtch 66 Is clos~, and the load switch is

cp•n.-d.  Pump!il 38 pump the anolyta sokJ&n 22 througll the negAtiva ~ompartm~rrt

14  end  ano!yte  reservoir  26  via.  ano~ supply  arrO  rerum  lin~ 30,  3Z.

SimUtaneouely, pumps 54 pump the catholyte  solution 24 through the poailh'e

compartment 18 anl:i catholyte reservoir 46 via catholyte supply end return lines 4S,

eo. Ea::h cell 121s charged by delivering eledrlcal energy from the power source f34

to negati'ieand positiVe electrode& 16, 20.  The electrical energy derives divalent

'llanarJlurn iona in the  ano)yte aolutlon  :n and qulnva&nt vanadlum IOns In the

ca1ho¥e solution 24.

1)1031]    EO!ctncl1y Is dra"" from eaclt oeu 12 by opening load 6'Mtch70 and -1n11

power- ::n;~uroc ewitoh ea.  Thio ooueeo lgad as, vd'llohie in eleobioal oommunlcatlol'l

with rN!!lBI~e and poarri'Jeelectrocles16, 20 to lllillldraw electrlCalenergy.

ltfCl3ZJ    A number of control parametere iflftJence the efficiency of the eystem 10.

A kal( control parameter Is the temperature of t11e anolyle and catholyte solutiona 22, 14 The temp818b.Jre ia influencad by ambient condffions and load requirements. Another control parameter i8 the pressure of lhe &clulione 22, 24 which ie influer.ced by flDW rates, SOC, temperature, and plant ~ealgn. A further control pBrameler ia ih• ftcw nrla, which is controlled through vartabB speed drtves. Other control

par8Tla1en. lllclud'l:l ~Jhi!.rsing current anti d\lrWon  of GQMten'c. ourren'c. periode,  a11

determined by SOC.

[0033] Another control parameter Is hydrogen evok.ltlon. The hydrogen evolution is minimized in the control strategy end Ia lrTftJenced by temperalure, SOC, load and rates of charge and discharge,. which are l'2rTP rates.

[01)34] Ancrtl"ler control parameter Is the n;mlxlng of concentratlcns of the anolyt11 and cathclyte solutlona 22, 24 with respect to volumes. Pressure differentials develop 011er tima as raurvolnJ 28, 48 have different eled:rolyte levels due to cromover. concentrallons also vary, i:llld IJ)'Jtcm optirriultion muot faGtor tho

1"'81"1Wing paramotar.

[00361    R.ect\atge and discharge perkde are adliitional control param&ten.  Tt'e

rate or charge and discharge lmpad 1he evolution of hydrogen.  In additton, dul1rg

dlscheu-ge, heat Is developed, and the temperature of the anolyte and cathol)te &DiutiDJ"S 22, 24 i5 raised. VIScosity is thua affedecl, and pllllp flow rates need to be adjuatad accordingly. The r:ptlmal tlme for charge and discharge is selected within tte mexinum rates that the system C&ll handle ae well as within Ule load

J"fllquiaements, I.e., time available in a day.

[IIOIQ    Refwring to F'lsuro 2, 11  blook dia!J'Bm of" teteoommunioation eyalem 100

10 snD'M1lllat lncruaes a VRB•E55 10Z, v.n;:n may De emDodled slmlarly to that

sncwn in Figure 1.  Thct VRB-ESS 102 is capable d  providing mLJttiple DC voltages

even wt')ile being charged.  For example,. 1he VRB-ESS 102 can provide a- 24Vand

- 48V CC supply without a need tor addition Ell power electron ice. The VRB-ESS 102 can alsl) be charged and disc:hargsd simultaneouely unlik" other batteriee.

[01»'7]  The system 100 ialn elecbtcal communication With an AC source 104. Tlle

AC soorce 104 may orlglna'tefrom a power artd, or be embodied as one or more

winrJ b.rbinoo,  one  or more eole.r pe.nde,  or o\hcr altomc&.o aourooa.   Thul5, the

sy&rn 100 may operate in a remote area and be isolated from a power grid wtththe

appropriate AC source 104. The telecf.lmmunleatfon ¥tern 100 lnc:tudea telecommunicatioll equipment 106 that inciLdos any number of transmitter, receN'er, or lralscelver devices to provide broadces1s in the electromagnetic sped:rum. For cellul~:~r, radia, and television oomrnurication purpoaea, the band of the el'ecmomagneticspectn.lm is from approxima1ely 1 MHz to approximately 40 GHz.

Telecommunication equipment 106 may include signal conversioo, noise reduction, 61ld anplfir;;atiQTJ dcv!Q:r.s to lmpi'QYCand bo~ the l!lisnat ealn cu::l ~ed.

[OOU) Ttle tBiecommllnication equlpmen1 106 ia in electrical a:~mmunlc:ation wfth cne or more antennas 108 1o ancl a- receNe ~agnet\c waves. The telecommunication equipment 106 may lndu[je an internal battery backup 110 to

provije a short-tenn power supply In the event af power Jnten'uptlon. The Internal

battery backup 110 may provide a few seca1ds of power.  In many instances, ttat i&

ell tt'atis required to ~Wokl broadcast irtem.lpllon.  Thus, the bstteiY backup 110

provides a ternponll'funint..rruplible -    •U!>P\y (UPS) fu.-nalily to have the

telemmmunlcalion equipment 106 remain opEratlonal during power interruption.

peal]    A rcotifior 112 ie In elootrioal ocnvnunioation with the AC powor BOUrDe

104  to  receive  and  convert  the  PC  power 10  Dt;;  power  ror  use  uy  1t1e

teiKOmmlrlication  equipment  108.    The  system  100  may  further  include  a

rechargeabte power cell 114 in etedrical coD'lmlrlicationwith the rectifier 112 End

the ieBcornmunication equipment we.  The power cell  114 provides short-term

power during a power interruption and thereby provides additional UPS functionality.

[0040]    The  system  100 further  Includes e VRB-ESS  cl'larger/reclffier 116  to

ccn\9d .O.C power to DC power end 10 ct"arge the VRB-ESS 102.  ll\e VRB•ESS

~llif«/~ter 110 i~ in c\cGtricol oommunic&tion with the- VRB.-ESS 102 through a

DC voltage bus 118.  During unlntsrupled Qlleratians. the AC po\W charges the

YRB-ESS 102 and powen the pumps 361 54.

[0041]    111e VRB-ESS 102 Is sized to 9Jilpor1 the telecommunication equipm9111:

1 DB for 11 predetermined amount of time. !VJ the power demands for the taecommunlc:ation equipment 106 are altered, the VR8-ESS 11)2 may be rEplaced
with an alematlvely sized devbe.  By My of example, a VRB-ESS 102 may be

aiud at 112 Ah for four hours of ~ntb11 to pravide 448 Ah.  This provides 20 kW

nours a  0~ for four houll5 or 112 ampt:.  Tha VRB-Eaa Alargcrtrcdilior 11EI D

aiz.ed accordingly, but rlorrnally at a 10 percent hgher rating than the VRB-ESS 102

[ll0421    Due to itB recharge speed, ltle VP.B-ESS 102 may ba ove!'lizedto allow

for ad:IIHonal power storage, whi*l allows tta VRBwESS 102 to be used proa.ctive~

to rmnage load demands through eggrl:!gatEd dispatch.  ThiS don not reduce 1he

IV!Iilatlility or reliability and can be U&Eid to h:wer energy bilb aa a dispen!ed energy

re&ol.lrce.  Conventional lead acid batreriM cannot achieve this without lerQthenilg

ihe recharge times and thereby reduce avalabUity sfld rellabUtty.

JOD43]    The VRB~ESS 102 Is able to prcvJde Its absolute soc Ed any time which

allOW& fer sYStem planning and delenninino when the telecommunication squipm•nt 106 will oeCIIOC opora:tion. Ourins a tong-tunn pQVfCr inteiTUpllon, a.n operator may coofirn the soc and be aware of tha nesd to bring diesel gene~tcn onwline to pa..wr the teJeeomrnunication equiprmnt ard recharge the VRB-ESS 102.

IOIM4J Referring to Figure 3, an alternative embodiment of a tefewmmunic11tion system 200 is shown. The system 200 incl.Jdes a switch 120 that Ia in electrical oom~nunlcatbn wtth 1he VRB-ESS ctlargerlrectifier 116, VRB•ESS 102, and the telemmmunication equipment 1Q6 aa 8hwin. The swttch 120 le timer controDed by

the .avai.Rbillty ~~ AC pi)Wer and m,~;~y n;m;Un  opan. to pre\19t'\t tfanarniuion of DC

power from the VRB-ESS 102• .

{0045]    Tha VRB-ESS chargerlrecl'r&r118 senses when the AC ):lower has besn

intirrupted  or  rssumed.    \IVhen  PI:,  power  Is  ntem.~pted, a  control  signal  is

trcmsmltted from the VRB-ESS chargerlredltler 115 to the switCh 120. Upo11 receivir1g the control slgr~al, the Bwtldi 120 welts for a predetermined MJOUnt of time before ebslng and enabling transmlsala1 o1 DC pDWBr from lhe VRB-ESS 102. This
prevents use of tho VRB-ESS 102 for laloelnteou~ons, wnrcn may occur durhg bi'O\M'\-o.utand bl-ack-out ~iona. 01Jr1ns ~D dGad-band period of time, tnc !elemmmunleallon equipment 10e may rely on power 1r0m the Internal battery 110 an::l the power cell114. Whe11 AC power ie restored, the VRB-ESS ch.argarfredlfel f 1B transmits a control sfg11al to the awttch 120, and the switch 120 opene. AC

pOMr ia eimultaneous.ly tranamitlad oJlce ag11in to the telecommunication equipment

106 and to the VRB~ESS 1021or mcharging.

[OtMS]    Retan1ng  to  Figura  41   a  now  ~laQt9m 300  for  provldlng  power  to

telec:ommunicstion equipment is shown. The fbw diagram 300 rela.tee to tt.e system

200.  T&leconvnunicatiOM equipment receives 302 power from an AC source.  The

power 11 oonvened 304 nom AC ID DC.  lhe AC source lo monnore~ Joe 1o

dtttermlne H'theraie an intomJptlon. Upon in'lemJptionof AC poww, o predetormiMid

amo~nt otUme Is clocked 306 to detennlne tf M; power is resumed. Simultaneously',

DC power Is provided 310 to the telecommunication equipment from an intemal

bstti:My,  pcmer  c;ell,  and/or  some  other  power  source.    Upon  reaching  the

predeterminsd amaunt of lime, a switch is enebed 312 to deliver DC power from a

VRB-ESS to the lelecommunication equipmalt

[0047]    AC pCWQr Js continuQUsly mc;oltorecl 314 to deten"nine when AC  power

reournes.  Upon AC oower resurnpllon. tl1e sMich is disabled 316. BOd DC power

from '\he VRB-ES6 cce:ece tranomioeion to th~ telcoommuniccrtlon equipment  AC

p- r  II deUvered  318 Ill 111e VRS.ESS to enable  recharging.   The  process

contlriUes wltfl monitoring 306 the A.C powM BIJUJCe onoe again.

[110481    buring an AC power interruption, tho VRB-ESS mav provide DC pawor

untft AC power resumes or until fuel cell charg~M are depleted.  An operator mey

monibrtha SOC aeneo11: 27 and determine the SOC tor the VRB-ESS. The current

SOC lnt1iel:lfee the time remaining for the teleconmunlcatlon equipment beforo ttle

VRB-~SS ~haroe Is depleted.  During the IBITlairino time. fossil fuel oeneratoR or

a;ldJtl~naJ batteries mey be employed to pO'I't'erthe tetooommunb~Uon ~uipment if

resumprion in AC power does not appear im'"inent

[0048]    "a system 100 does not Include a swlch 120, then steps 30B, 312, and

316 are not needed.  Tl'leswitch is effecl:illely "on• at all times, and an Interruption of

AC ~""""' ln~lateo dellllery of DC power from an Internal battery 110, power cell 114,

and from the VRB•ESS 102.

[OO&D)    A telooommunlcatlon system dledoeed nereln inooljiOrales a 'IRB-ESS

with a highly efficient recll:irge r.;rte and increased availability.  Tl'lesystem detects a

power  interruption  and  employs  a VRil-ESS  tn  a  timely  manner to  pmoent

interruption  in telecommunication  operaticn.   The  VRB~ESS Is able to  relay  lhe

present soc at any time to Improve system planning. The VRil-ESS eliminates 1he

need 'lora large Internal battery_Jn the telecommunication equipment 106.  A VRB•

ESS ie more durable then lead acid batteries with a longer life, kwler operating costs.

reduced losses, and is very efficient.  A VRB-ESS has remote monitoring capabDity

to delem11ne Its SOC, and the soc tell• you Whetller the battery Is functioning or

not.

[OD51]    ~will be obvious to those having skill in 1he art that many changes may be

mEJde to the details of the above-described embodi'nentawithout departing from the

underlying principles of the invention.  The scope of the present invention snould,

therefore, be determined only by the folowi'lgclaims.

1.  A telecanmunication system to gel"'erataelectromagnetic tral"'smissicns

end opera11ng on power lnttlated from an AC source, comprlslng:

telecommunication equipment inck.lding an antenna;

a  rectifier  in  electrfcal  communication  with.  the  AC  source  and  'the

telecommunication equipment, the rectifier 1o oonvert AC power to DC power,

a Vf{B-ESS cnargerrrectmer In etecrtoal communication with the AC source,

the VRB-ESS chsrger/rec:tifier convertirg AC ~r ta DC power; and

a Vf{B-ESS In electrical communication wfth the VRB-ESS charger/rectifier to

receive DC power to thereby charge the VRB-ESS, the VRB-ESS further in electrical

oommunicstion  with  the  telecommuntcation  equipment  to  provide  DC  power

transmission to the telecommunication EKJJ~ment

2.    The IBiecommunicatlon  system  of  claim  1,  wherein  the  VRB•ESS

oheuger/reotifier is  to .menitor  1'90eiYed t&  power to  detarmin&  an  AC  power

inte~d further comprising a timEI" sw~cn in electrical communication with

the VR8-ESS charger/rectifier and the VRB-ESS to control DC pcrNer tranamieaion

from the VRB-ESS to the telecommunication equipment, the timer switch to receive

a control signal  from  the VRB-ESS  chargerfrectifier  Indicative  of an  AC  power

interruption, t!]e timer switch to waH a .e,redetermined time period before enabling DC

~ower transmission to the telecommunicaUon ffll''ipment

3.    The telecommunication  system  of  claim  2.  wherein  the  VRB•ESS

cllargerlrcctifier  is  further  to  ~ AC  pgwcr  to  dotonnine  AC  .power

r9SUI!fP~•

4.  The telecommunication eystem cf Gle.im 3, wt\erein the VRB-E5S 181\.lrther

to transmit 1!1 control signal indicative of AC power resumption to the timer switcli,


al'ldwheretn 'thetimer SVr'ltch, _In response to "he conbol signal, cleables DC power

transrnisaim to the telecommunAtion equipment.

5  The telecommunication sy~tem of claim 1,_wherein the te~mmunlcalion

equipment Includes an l~nal battery tel  provkie PC power upon an AC power

lntem.lption.

6.  The ta~mmun'a.tion sygtem crt claim 1. further comprisii'ICJa tlower cell

ln elec:trtcal oornmunlccrtion with tho rcctilier ard th" tcleoommunication equipment b

provide  DC  power  to  the  talecorrvnunicatiorl  eq~nt upon  an  AC  power

Interruption.

7.  Th& te1ecanmunlcatlon system r.tf claiRl 1, wherein the VRB-ESS inducle&

a.    SOC sensor to maaBlft a present SOC.

B.   A  method for  prtWiding  pCMer  to  telecommunlcattm  eQUipment for

ge11era1ing electromagnetic tramml8SfJila, Cf)lllprising:

conwrting AC pi:IN'8rfrom an AC 81''.1UfMinto DC power for QDeratii1D the

telecommuntcatlon equ1pne11t;

placing the "\alecommunic:ation equipment in electn'caleommunication with DC

power,

converting AC power from the AC  sc;:P..HCe  lnto OC povrer for dunging tbe

VRB-ESS;

placing a VRB-ESS in electrical communbation with DC power.

l)ladng the VRB-E6S In electrical ccmRlunlcatlon wtth the teleoommunbl.tion

~uipiTIGnt;and

the VRHSS transmltHng DC power to Ule telcctmmunroat1on equlpmenl upon AC power interrup1ion.
9. The method of claim 6! fUrther wmpr1sing:

monitoring received AC power to detennine an AC power intem..ption; transmitting a control signal indica\he o1 ran AC power lntem.JptJon to a timer

:Mttch, the timer switch to control DC power transmission from the VRB~ESS to tie telecommunication equipment; and

the timer SlNitch waiting  a predetermined time  period aftsr receiving the

control signal befOre enabling DC power transmission to the  telecommunication

equipment.

1o. The method of olalrn 9, furtl'Jer coi'J1)rlsing monitoring AC power to determine AC power resumption.

11. The method of claim 10, furtl'lercomplieing:

transmitting a control signal indicative of AC power re&UrT1JtiOn to the timer sYiitoh;and
the timer ewitcl1,  in  !Wponu  to  the  C<mtrol  eignal,  disabling  DC  power

transmission from the VRB-ESS to the telecommunication equipment.

12.  The method of claim 8, further comprising an internal ~rovidhg

DC power to the telecommunication equipment upon an AC power interruption.

13.    The method of claim 8, further comprising a power cell providing DC power to the telecomnMJnbl.tion equipment upon an AC power interruption.
14.    The method of claim 8, further oanpriaing monitoring the SOC of the

VRE-ESS and  deteiTT1ining a remaining operaUng time for the telecommunication

equipment baeed on the SOC.

15.    A method for providing  powsr to telecommunication  equipment  for

generating electromagnetic tranemlselons, compli&ing:

iii  rectifier  converting AC  power from  a11 AC  soun::e  Into  DC  pO'It'erfor

operating the telecommunicatlon equipment;

~lacing the telecommunlca'tianequipment il electrical communi::ation with the

DC power;

a VRB-ESS charger/rectifier convertl'gAC power from the AC eooroe Into DC

power;

placing a VRB-ESS In electrical communlcatnn wnh tne DC ~

pladng the VR8-ESS in eiQciricel COITYTlUnication with the telecommunication equipment, and

the VRB-ESS transmltUng DC pow&r to the telecommunication equipment upon AC power interruption.

16. The method of claim 15, further oanprial,g:

the VRB-ESS charger/rectifier monitoring received AC power to determine an

AC power interruption;

the VRB-ESS charger/rectifier lransmilting a control signal indicative of an P..C power irderllJptiOn to a timer swich, the timer switch to corrtrol DC power tranamisslon from the VRB-ESS to the telecommunication equipment; and

the timer swttcl1 waiting a predetermined time period after recelvi11g the control signal before enabling DC po'oNSr tranemission to the teleconYilunication equipment.

17. The method of claim 16, fllrlher comprising the VRB-ESS chargerlrect111er

mooitoring AC power to deb:lrmine AC poNCr resumption.

18. "The method of claim 17, furlhar comprising:

the VRB-ESS charger/rectifier -•mltllng a control olg,al lndlcatNe of P..C

poy.er resumption to the timer switch; and


the timer SY.11:ch,  In response to 1he C<Jntrol  signal,  disabling  DC power

tranen1esion from the VRS..ESS to _tl"'etelecommunication equipment.

1'd. 1he mel:hod c:l claim 16, ful'ttlercomprising an internal battery providing

OC power to the telecommunication equi~ment upon an AC power ln"\errupt1on.

20.  lhe method of claim 16, further comprising a p~J~NE~r eel Pftl'ilding  DC

power to the teleoommunioatlon equipmcmt upon an ~ powar inlarrtlplion.

21. T/te methOd 01 claim 1t:l, fUrther IXlrqJrislllg:

an SOC sensor monitoring the SOC oft11e VRB-ESS; and

detennining a remaining operating time for the telecommunication equipment

based on the SOC.

Newsletter

Join our newsletter for CIPIT news through subscriptions!

SEND

Social Media

    

Contact Us

TEL : (254) 703 034 612