slide 1

Back to the List of the Granted Patents                                      Click here to download KE000285 PDF

Kenya Industrial Property Institute.
(12) PATENT
(51) Int.CL7:
A 01N 43/40, 43/54
(21)    Application Number: 2006/ 000389
(22)    Filing Date:
10/08/2006 (10/02/2005)
(30) Priority data:
60636,999 17/12/2004 US and 04356015.0 12/02/2004 EP    (73)    Owner:
BAYER CROPSCIENCE SA of , 16 rue Jean-Marie Leclair, F-69009 Lyon, France
(72) Inventor:
GOUOT, Jean-Marie and GROSJEAN-COURNOYER, Mari-Claire
(74)    Agent/address for correspondence:
Kaplan & Stratton Advocates, P.O. Box 40111-00100, Nairobi (85) PCT data:
WO 2005/077182 25/08/2005
   
(54) Title:
FUNGICIDAL COMPOSITION COMPRISING A PYRIDYLETHYLBENZAMIDE DERIVATIVE AND A COMPOUND CAPABLE OF INHIBITING THE METHIONINE BIOSYNTHESIS
(57) Abstract:
A composition comprising at least a pyridylethylbenzamide derivative of general formula (1) (a) and a compound capable of inhibiting the methionine biosynthesis (b) in a (a) /(b) weight ratio of from 0.01 to 20. Acomposition further comprising an additional fungicidal compound. A method for preventively or curatively combating the phytopathogenic fungi of crops by using this composition.
 
 
Fungicidal composition comprising a pyridylethylbenzamide derivative and a
compound capable of inhibiting the methionine biosynthesis
5    The present invention relates to novel fungicide compositions comprising a
pyridylethylbenzamide derivative and a compound capable of inhibiting the methionine biosynthesis. The present invention also relates to a method of combating or controlling phytopathogenic fungi by applying at a locus infested or liable to be infested such a composition.
10
International patent application WO 01/11965 generically discloses numerous pyridylethylbenzamide derivatives. The possibility of combining one or more of these numerous pyridylethylbenzamide derivatives with known fungicidal products to develop a fungicidal activity is disclosed in general terms, without any specific
15 example or biological data.
It is always of high-interest in agriculture to use novel pesticidal mixtures showing a synergistic effect in order notably to avoid or to control the development of resistant strains to the active ingredients or to the mixtures of known active ingredients used by the farmer while minimising the doses of chemical products
20 spread in the environment and reducing the cost of the treatment.
We have now found some novel fungicidal compositions which possess the above mentioned characteristics.
Accordingly, the present invention relates to a composition comprising :
25 a) a pyridylethylbenzamide derivative of general formula (1)
(X)P)(%
N/*\./"         00,    (I)

in which :
- p is an integer equal to 1, 2, 3 or 4;
- q is an integer equal to 1, 2, 3, 4 or 5;
- each substituent X is chosen, independently of the others, as being halogen, alkyl or 30    haloalkyl;
 
- each substituent Y is chosen, independently of the others, as being halogen, alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, amino, phenoxy, alkylthio, dialkylamino, acyl, cyano, ester, hydroxy, aminoalkyl, benzyl, haloalkoxy, halosulphonyl, halothioalkyl, alkoxyalkenyl, alkylsulphonamide, nitro, alkylsulphonyl, phenylsulphonyl or
5 benzylsulphonyl;
as to the N-oxides of 2-pyridine thereof;
and
b) a compound capable of inhibiting the methionine biosynthesis;
in a (a) / (b) weight ratio of from 0.01 to 20.
10
In the context of the present invention :
- halogen means chlorine, bromine, iodine or fluorine;
- each of the alkyl or acyl radicals present in the molecule contains from 1 to 10 carbon atoms, preferably from 1 to 7 carbon atoms, more preferably from 1 to 15 5 carbon atoms, and may be linear or branched;
- each of the alkenyl or alkynyl radicals present in the molecule contains from 2 to 10 carbon atoms, preferably from 2 to 7 carbon atoms, more preferably from 2 to 5 carbon atoms, and may be linear or branched.
100
in which E represents the expected percentage of inhibition of the disease for the
combination of the two fungicides at defined doses (for example equal to x and y
30 respectively), x is the percentage of inhibition observed for the disease by the compound (I) at a defined dose (equal to x), y is the percentage of inhibition observed for the disease by the compound (II) at a defined dose (equal to y). When the percentage of inhibition observed for the combination is greater than E, there is a synergistic effect.
35
 
The composition according to the present invention comprises a pyridylethylbenzamide derivative of general formula (I). Preferably, the present invention relates to a composition comprising a pyridylethylbenzamide derivative of general formula (I) in which the different characteristics may be chosen alone or in
5 combination as being :
-    as regards p, p is 2;
- as regards q, q is 1 or 2. More preferably, q is 2;
-    as regards X, X is chosen, independently of the others, as being halogen or haloalkyl. More preferably, X is chosen, independently of the others, as being a 10 chlorine atom or a trifluoromethyl group;
- as regards Y, Y is chosen, independently of the others, as being halogen or haloalkyl. More preferably, Y is chosen, independently of the others, as being a chlorine atom or a trifluoromethyl group;
More preferably, the pyridylethylbenzamide derivative of general formula (I) 15 present in the composition of the present invention is :
- N- { 2[3-chloro-5-(tri fluoromethyl)-2-pyridinyflethyl } -2-trifluoromethylbenzamide (compound 1);
- N- { 2[3-chloro-5-(trifluoromethyl)-2-pyridinyl]ethyl } -2-iodobenzamide (compound 2); or
20 - N-{213,5-dichloro-2-pyridinyl]ethy1}-2-trifluoromethylbenzamide (compound 3).
Even more preferably, the pyridylethylbenzamide derivative of general formula (I) present in the composition of the present invention is N-{2-p-chloro-5- (trifluoromethyl)-2-pyridinyflethyl}-2-trifluoromethylbenzamide (compound 1).
25    The composition according to the present invention comprises a compound
capable of inhibiting the methionine biosynthesis. Preferably, the present invention relates to a composition comprising a compound capable of inhibiting the methionine biosynthesis selected from cyprodinyl, mepanipyrim and pyrimethanil. Pyrimethanil is preferred.
30
The composition according to the present invention comprises (a) at least a pyridylethylbenzamide derivative of general formula (I) and (b) a compound capable of inhibiting the methionine biosynthesis in an (a) / (b) weight ratio of from 0.01 to 20; preferably of from 0.05 to 10; even more preferably, of from 0.1 to 5.
35
 
The composition of the present invention may further comprise at least one other different fungicide active ingredient (c).
The fungicidal active ingredient (c) may be selected from azaconazole, azoxystrobin, (2)-N4a-(cyclopropylmethoxyimino)-2,3-difluoro-6-
5 (trifluoromethyl)benzyI]-2-phenylacetamide, 6-iodo-2-propoxy-3-propylquinazolin¬4(31-0-one, benataxyl, benomyl, benthiavalicarb, biphenyl, bitertanol, blasticidin-S, boscalid, borax, bromuconazole, bupirimate, sec-butylamine, calcium polysulfide, captafol, captan, carbendazim, carboxin, carpropamid, chinomethionat, chlorothalonil, chiozolinate, copper hydroxide, copper octanoate, copper
10 oxychloride, copper sulfate, cuprous oxide, cyazofamid, cymoxanil, cyproconazole, cyprodinil, dazomet, debacarb, dichlofluanid, dichlorophen, diclobutrazole, diclocymet, diclomezine, dicloran, diethofencarb, difenoconazole, difenzoquat metilsulfate, difenzoquat, diflumetorim, dimethirimol, dimethomorph, diniconazole, dinobuton, dinocap, diphenylamine, dithianon, dodemorph, dodemorph acetate,
15 dodine, edifenphos, epoxiconazole, ethaboxam, ethirimol, ethoxyquin, etaconazole, etridiazole, famoxadone, fenamidone, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenpiclonil, fenoxanil, fenpropidin, fenpropimorph, fentin, fentin hydroxide, fentin acetate, ferbam, ferimzone, fluazinam, fludioxonil, fluoroimide, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutolanil, flutriafol, folpet,
20 formaldehyde, fosetyl, fosetyl-aluminium, fuberidazole, furalaxyl, furametpyr, guazatine, guazatine acetates, hexachlorobenzene, hexaconazole, 8-hydroxyquinoline sulfate, potassium hydroxyquinoline sulfate, hymexazol, imazalil sulfate, imazalil, imibenconazole, iminoctadine, iminoctadine triacetate, ipconazole, iprobenfos, iprodione, iprovalicarb, isoprothiolane, kasugamycin, kasugamycin hydrochloride
25 hydrate, kresoxim-methyl, mancopper, mancozeb, maneb, mepanipyrim, mepronil, mercuric chloride, mercuric oxide, mercurous chloride, metalaxyl, metalaxyl-M, metam-sodium, metam, metconazole, methasulfocarb, methyl isothiocyanate, metiram, metominostrobin, mildiomycin, myclobutanil, nabam, nickel bis(dimethyldithiocarbamate), nitrothal-isopropyl, nuarimol, octhilinone, ofurace,
30 oleic acid, oxadixyl, oxine-copper, oxpoconazole fumarate, oxycarboxin, pefurazoate, penconazole, pencycuron, pentachlorophenol, sodium pentachlorophenoxide, pentachlorophenyl laurate, phenylmercury acetate, sodium 2- phenylphenoxide, 2-phenylphenol, phosphorous acid, phthalide, picoxystrobin, piperalin, polyoxinspolyoxin B, polyoxin, polyoxorim, probenazole, prochloraz,
35 procymidone, propamocarb hydrochloride, propamocarb, propiconazole, propineb, prothioconazole, pyraclostrobin, pyrazophos, pyributicarb, pyrifenox, pyrimethanil,
 
pyroquilon, quinoxyfen, quintozene, silthiofam, simeconazole, spiroxamine, sulfur, tar oils, tebuconazole, tecnazene, tetraconazole, thiabendazole, thifluzamide, thiophanate-methyl, thiram, tolclofos-methyl, tolylfluanid, triadimefon, triadimenol, triazoxide, tricyclazole, tridemorph, trifloxystrobin, triflumizole, triforine,
5 triticonazole, validamycin, vinclozolin, zineb, ziram and zoxamide.
Preferably, fungicidal active ingredient (c) is selected from captane., propineb, fenhexamid, trifloxystrobin, tolylfluanid, iprodione, procymidone and chlorotalonil.
Where the third active ingredient (c) as defined above is present in the
10 composition, this compound may be present in an amount of (a) : (b) : (c) weight ratio of from 1 : 0.01 : 0.01 to 1 : 20 : 20; the ratios of compound (a) and compound (c) varying independently from each other. Preferably, the (a) : (b) : (c) weight ratio may be of from 1 : 0.05 : 0.05 to 1 : 10 : 10.
15    Following compositions may be cited to illustrate in a non-limited manner the
present invention : compound 1 with cyprodinyl, compound 1 with mepanipyrim, compound 1 with pyrimethanil, compound 2 with cyprodinyl, compound 2 with mepanipyrim, compound 2 with pyrimethanil, compound 3 with cyprodinyl, compound 3 with mepanipyrim, compound 3 with pyrimethanil.
20
The composition according to the present invention may further comprise an other additional component such as an agriculturally acceptable support, carrier or filler.
In the present specification, the term "support" denotes a natural or synthetic,
25 organic or inorganic material with which the active material is combined to make it easier to apply, notably to the parts of the plant. This support is thus generally inert and should be agriculturally acceptable. The support may be a solid or a liquid. Examples of suitable supports include clays, natural or synthetic silicates, silica, resins, waxes, solid fertilisers, water, alcohols, in particular butanol, organic solvents,
30 mineral and plant oils and derivatives thereof. Mixtures of such supports may also be used.
The composition may also comprise other additional components. In
particular, the composition may further comprise a surfactant. The surfactant can be
an emulsifier, a dispersing agent or a wetting agent of ionic or non-ionic type or a
35 mixture of such surfactants. Mention may be made, for example, of polyacrylic acid
salts, lignosulphonic acid salts, phenolsulphonic or naphthalenesulphonic acid salts,
 
polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (in particular alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (in particular alkyl taurates), phosphoric esters of polyoxyethylated alcohols or phenols, fatty acid esters of
5 polyols, and derivatives of the above compounds containing sulphate, sulphonate and phosphate functions. The presence of at least one surfactant is generally essential when the active material and/or the inert support are water-insoluble and when the vector agent for the application is water. Preferably, surfactant. content may be comprised between 5% and 40% by weight of the composition.
10    Additional components may also be included, e.g. protective colloids,
adhesives, thickeners, thixotropic agents, penetration agents, stabilisers, sequestering agents. More generally, the active materials can be combined with any solid or liquid additive, which complies with the usual formulation techniques.
In general, the composition according to the invention may contain from 0.05
15 to 99% (by weight) of active material, preferably 10 to 70% by weight.
Compositions according to the present invention can be used in various forms such as aerosol dispenser, capsule suspension, cold fogging concentrate, dustable powder, emulsifiable concentrate, emulsion oil in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas
20 (under pressure), gas generating product, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, powder for dry seed treatment, seed coated with a pesticide, soluble concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), ultra low volume (ulv)
25  liquid, ultra low volume (ulv) suspension, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water soluble powder for seed treatment and wettable powder.
These compositions include not only compositions which are ready to be applied to the plant or seed to be treated by means of a suitable device, such as a
30 spraying or dusting device, but also concentrated commercial compositions which must be diluted before they are applied to the crop.
The fungicidal compositions of the present invention can be used to curatively
or preventively control phytopathogenic fungi of crops. Thus, according to a further
35 aspect of the present invention, there is provided a method for preventively or
curatively controlling phytopathogenic fungi of crops characterised in that a fungicidal
 
composition as hereinbefore defined is applied to the seed, the plant and/or to the fruit of the plant or to the soil in which the plant is growing or in which it is desired to grow.
The composition as used against phytopathogenic fungi of crops comprises an effective and non-phytotoxic amount of an active material of general formula (I).
 5 The expression "effective and non-phytotoxic amount" means an amount of composition according to the invention which is sufficient to control or destroy the fungi present or liable to appear on the crops, and which does not entail any appreciable symptom of phytotoxicity for the said crops. Such an amount can vary within a wide range depending on the fungus to be combated or controlled, the type of crop, the
10 climatic conditions and the compounds included in the fungicidal composition according to the invention.
This amount can be determined by systematic field trials, which are within the capabilities of a person skilled in the art.
The method of treatment according to the present invention is useful to treat
15 propagation material such as tubers or rhizomes, but also seeds, seedlings or seedlings pricking out and plants or plants pricking out. This method of treatment can also be useful to treat roots. The method of treatment according to the present invention can also be useful to treat the overground parts of the plant such as trunks, stems or stalks, leaves, flowers and fruits of the concerned plant.
    20    Among the plants that can be protected by the method according to the
invention, mention may be made of cotton; flax; vine; fruit crops such as Rosaceae sp. (for instance pip fruits such as apples and pears, but also stone fruits such as apricots, almonds and peaches), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp.,
25 Lauraceae sp., Musaceae sp. (for instance banana trees and plantins), Rubiaceae sp., Theaceae sp., Sterculiceae sp., Rutaceae sp. (for instance lemons, oranges and grapefruits); leguminous crops such as Solanaceae sp. (for instance tomatoes), Liliaceae sp., Asteraceae sp. (for instance lettuces), Umbelliferae sp., Cruciferae sp., Chenopodiaceae sp., Cucurbitaceae sp., Papilionaceae sp. (for instance peas),
30 Rosaceae sp. (for instance strawberries); big crops such as Graminae sp. (for instance maize, cereals such as wheat, rice, barley and triticale), Asteraceae sp. (for instance sunflower), Cruciferae sp. (for instance colza), Papilionaceae sp. (for instance soja), Solanaceae sp. (for instance potatoes), Chenopodiaceae sp. (for instance beetroots); horticultural and forest crops; as well as genetically modified
35 homologues of these crops.
 
Among the plants and the possible diseases of these plants protected by the method according to the present invention, mention may be made of :
- wheat, as regards controlling the following seed diseases: fusaria (Microdochium nivale and Fusarium roseum), stinking smut (Tilletia caries, Tilletia
5 controversy or Tilletia indica), septoria disease (Septoria nodorum) and loose smut;
- wheat, as regards controlling the following diseases of the aerial parts of the plant: cereal eyespot (Tapesia yallundae, Tapesia acuiformis), take-al I (Gaeumannomyces graminis), foot blight (F. culmorum, F. graminearum), black speck (Rhizoctonia cerealis), powdery mildew (Erysiphe graminis forma specie tritici), rusts
10 (Puccinia striiformis and Puccinia recondita) and septoria diseases (Septoria tritici and Septoria nodorum);
- wheat and barley, as regards controlling bacterial and viral diseases, for example barley yellow mosaic;
- barley, as regards controlling the following seed diseases: net blotch
15 (Pyrenophora graminea, Pyrenophora teres and Cochliobolus sativus), loose smut (Ustilago nuda) and fusaria (Microdochium nivale and Fusarium roseum);
- barley, as regards controlling the following diseases of the aerial parts of the plant: cereal eyespot (Tapesia yallundae), net blotch (Pyrenophora teres and Cochliobolus sativus), powdery mildew (Erysiphe graminis forma specie hordei),
20 dwarf leaf rust (Puccinia hordei) and leaf blotch (Rhynchosporium secalis);
- potato, as regards controlling tuber diseases (in particular Helminthosporium solani, Phoma tuberosa, Rhizoctonia solani, Fusarium solani), mildew (Phytopthora infestans) and certain viruses (virus Y);
- potato, as regards controlling the following foliage diseases: early blight 25 (Alternaria solani), mildew (Phytophthora infestans);
- cotton, as regards controlling the following diseases of young plants grown from seeds: damping-off and collar rot (Rhizoctonia solani, Fusarium oxysporum) and black root rot (Thielaviopsis basicola);
- protein yielding crops, for example peas, as regards controlling the
30 folloWing seed diseases: anthracnose (Ascochyta pisi, Mycosphaerella pinodes), fusaria (Fusarium oxysporum), grey mould (Bottytis cinerea) and mildew (Peronospora pisi);
- oil-bearing crops, for example rape, as regards controlling the following
seed diseases: Phoma lingam, Alternaria brassicae and Sclerotinia sclerotiorum;
35        - corn, as regards controlling seed diseases: (Rhizopus sp., Penicillium sp.,
Trichoderma sp., Aspergillus sp., and Gibberella fujikuroi);
 
- flax, as regards controlling the seed disease: Alternaria linicola; - forest trees, as regards controlling damping-off (Fusarium oxysporum, Rhizoctonia salmi);
- rice, as regards controlling the following diseases of the aerial parts: blast
5 disease (Magnaporthe grisea), bordered sheath spot (Rhizoctonia solani);
- leguminous crops, as regards controlling the following diseases of seeds or of young plants grown from seeds: damping-off and collar rot (Fusarium oxysporum, Fusarium roseum, Rhizoctonia solani, Pythium sp.);
- leguminous crops, as regards controlling the following diseases of the aerial
10 parts: grey mould (Botrytis sp.), powdery mildews (in particular Erysiphe cichoracearum, Sphaerotheca fuliginea and Leveillula taurica), fusaria (Fusarium oxysporum, Fusarium roseum), leaf spot (Cladosporium sp.), alternaria leaf spot (Alternaria sp.), anthracnose (Colletotrichum sp.), septoria leaf spot (Septoria sp.), black speck (Rhizoctonia solani), mildews (for example Bremia lactucae,
15 Peronospora sp., Pseudoperonospora sp., Phytophthora sp.);
- fruit trees, as regards diseases of the aerial parts: monilia disease (Monilia fructigenae, M laxa), scab (Venturia inaequalis), powdery mildew (Podosphaera leucotricha);
- vine, as regards diseases of the foliage: in particular grey mould (Botrytis 20 cinerea), powdery mildew (Uncinula necator), black rot (Guignardia biwelli) and mildew (Plasmopara viticola);
- beetroot, as regards the following diseases of the aerial parts: cercospora blight (Cercospora beticola), powdery mildew (Erysiphe beticola), leaf spot (Ramularia beticola).
25
The fungicidal composition according to the present invention may also be used against fungal diseases liable to grow on or inside timber. The term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and
30 plywood. The method for treating timber according to the invention mainly consists in contacting one or more compounds of the present invention, or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.
35    The fungicidal composition according to the present invention may also be
used in the treatment of genetically modified organisms with the compounds
 
according to the invention or the agrochemical compositions according to the invention. Genetically modified plants are plants into in which genome a heterologous gene encoding a protein of interest has been stably integrated. The expression "heterologous gene encoding a protein of interest" essentially means
5 genes which give the transformed plant new agronomic properties, or genes for improving the agronomic quality of the transformed plant.
The dose of active material usually applied in the treatment according to the present invention is generally and advantageously between 10 and 2000 g/ha,
10 preferably between 20 and 1500 g/ha for applications in foliar treatment. The dose of active substance applied is generally and advantageously between 1 and 200 g per 100 kg of seed, preferably befween 2 and 150 g per 100 kg of seed in the case of seed treatment. It is clearly understood that the doses indicated above are given as illustrative examples of the invention. A person skilled in the art will know how to
15 adapt the application doses according to the nature of the crop to be treated.
The compositions according to the present invention may also be used fore the preparation of composition useful to curatively or preventively treat human and animal fungal diseases such as, for example, mycoses, dermatoses, trichophyton
20 diseases and candidiases or diseases caused by Aspergillus spp. or Candida spp., for example Aspergillus fumigatus or Candida albicans respectively.
The present invention will now be illustrated with the following examples :
25 Example 1 : Efficacy against Ervsiphe zrarninis f. sp. zraminis of a mixture containing N-{2-13-chloro-5-(trifluoromethyl)-2-pyridinyllethyl}-2- trifluoromethylbenzamide (Compound 1) and cyprodinil
The active ingredients tested are prepared by potter homogenisation in a 30 mixture of acetone/tween/water. This suspension is then diluted with water to obtain the desired active material concentration.
Wheat plants (Audace variety) in starter cups, sown on 50/50 peat soil-pozzolana substrate and grown at 12°C, are treated at the 1-leaf stage (10 cm tall) by spraying with the aqueous suspension described above.
35    Plants, used as controls, are treated with an aqueous solution not containing
the active material.
 
After 24 hours, the plants are contaminated byWffiem with Erysiphe
graminis f. sp. tritici spores, the dusting being carried out using diseased plants.
Grading is carried out 7 to 14 days after the contamination, in comparison with the control plants.
5
The following table summarises the results obtained when tested compound 1 and cyprodinil alone and in a 16:1 weight ratio mixture.

    Dose
(g/ha)    °A, Efficacy    Synergism
(Colby)
Compound 1    500    35    -
Cyprodinil    31.2    •    0    -
Compound 1 + Cyprodinil
(Ratio 16:1)    500 + 31.2    55    +20

10    According to the Colby method, a synergistic effect of the mixtures tested has
been observed.
Example 2 : Efficacy against Botrytis cinerea of a mixture containing N-12-13-
chloro-5-(trifluoromethyl)-2-pyridinyllethv11-2-trifluoromethvibenzamide 15 (Compound 11 and pyrimethanil
The formulated (concentrated suspension) compounds are diluted with water to obtain the desired active material concentration Gherkin plants (Petit vert de Paris variety) in starter cups, sown on a 50/50 peat soil-pozzolana substrate and grown at
20  18- 20°C, are treated at the cotyledon Z11 stage by spraying with the aqueous suspension described above. Plants, used as controls, are treated with an aqueous solution not containing the active material.
After 24 hours, the plants are contaminated by depositing drops of an aqueous suspension of Botrytis cinerea spores (150,000 spores per ml) on upper surface of the
25 leaves. The spores are collected from a 15-day-old culture and are suspended in a nutrient solution composed of :
- 20 g/L of gelatine
- 50 g/L of cane sugar
- 2 g/L of NH4NO3
 
- 1 g/L of KH2PO4
The contaminated gherkin plants are settled for 5/7 days in a climatic room at 15-11 °C (day/night) and at 80% relative humidity. Grading (% of efficacy) is carried out 5 to 7 days after the contamination, in comparison with the control plants.
5
The following table summarises the results obtained when tested compound 1 and pyrimethanil alone and in a 3:1 weight ratio mixture.

    Dose
(1)Pm)    % Efficacy    Synergism
(Colby)
Compound 1    37    45    -
Pyrimethanil    12.3     90    -
Compound 1 + pyrimethanil
(Ratio 3:1)    37 + 12.3    100    +5

10    According to the Colby method, a synergistic effect of the mixtures tested has
been observed.
Example 3 : Efficacy against Erysiphe ffrandnis f. sp. hordei of a mixture containing    N-(2-13-chloro-5-(trifluoromethy1)-2-pyridinyllethyl)-2-
15 trifluoromethylbenzamide (Compound 1) and mepanipvrim
The active ingredients tested are prepared by potter homogenisation in a mixture of acetone/tween/water . This suspension is then diluted with water to obtain the desired active material concentration.
20    Barley plants (Express variety) in starter cups, sown on 50/50 peat
soil-pozzolana substrate and grown at 12°C, are treated at the 1-leaf stage (10 cm tall) by spraying with the aqueous suspension described above.
Plants, used as controls, are treated with an aqueous solution not containing the active material.
25    After 24 hours, the plants are contaminated by dusting them with Erysiphe
graminis f. sp. hordei spores, the dusting being carried out using diseased plants. Grading is carried out 7 to 14 days after the contamination, in comparison with the control plants.
 
CLAIMS
5 1.    A composition comprising :
a)    a pyridylethylbenzamide derivative of general formula (I)
(X)
     (Y)q    (I)

in which :
-pis  an integer equal to 1, 2, 3 or 4;
- q is an integer equal to 1, 2, 3, 4 or 5;
10 - each substituent X is chosen, independently of the others, as being halogen, alkyl or haloalkyl;
- each substituent Y is chosen, independently of the others, as being halogen, alkyl,
alkenyl, alkynyl, haloalkyl, alkoxy, amino, phenoxy, alkylthio, dialkylamino, acyl,
cyano, ester, hydroxy, aminoalkyl, benzyl, haloalkoxy, halosulphonyl, halothioalkyl,
15 alkoxyalkenyl, alkylsulphonamide, nitro, alkylsulphonyl, phenylsulphonyl or benzylsulphonyl;
as to the N-oxides of 2-pyridine thereof;
and
b)    a compound capable of inhibiting the methionine biosynthesis;
20 in a (a) / (b) weight ratio of from 0.01 to 20.
2.    A composition according to claim 1, characterised in that p is 2.
3.    A composition according to claim 1 or 2, characterised in that q is or 2.
25
4.    A composition according to any of the claims 1 to 3, characterised in that X is chosen, independently of the others, as being halogen or haloalkyl.
5.    A composition according to any of the claims 1 to 4, characterised in that X is 30 chosen independently of the others, as being a chlorine atom or a trifluoromethyl group.
 
The following table summarises the results obtained when tested compound I and mepanipyrim alone and in a 1:1 weight ratio mixture.

    Dose
Spa)    % Efficacy    Synergism
(Colby)
Compound I    500    40    -
Mepanipyrim    500    0    -
Compound I + mepanipyrim
(Ratio 1:1)    500 + 500    70    +30

5    According to the Colby method, a synergistic effect of the mixtures tested has
been observed.
 
    6.    A composition according to any of the claims 1 to 5, characterised in that Y is
chosen, independently of the others, as being halogen or haloalkyl.
    5 7.    A composition according to any of the claims 1 to 6, characterised in that Y is
chosen, independently of the others, as being a chlorine atom or a trifluoromethyl group.
    8.    A composition according to any of the claims 1 to 7, characterised in that the
10 compound of general formula (I) is :
- N-(243-chloro-5-(trifluoromethyl)-2-pyridinyliethyl)-2-trifluoromethylbenzamide; - N- {2- [3-chloro-5-(trifluoroinethyl)-2-pyridinyl]ethyl) -2-iodobenzamide; or
- N- {213,5-dichloro-2-pyridinyllethy1}-2-thfluoromethylbenzamide
    15 9.    A composition according to claim 8, characterised in that the compound of
general formula (I) is N-{2[3-chloro-5-(trifluoromethyl)-2-pyridinyllethyl)-2- trifluoromethylbenzamide.
10.    A composition according to any of the claims 1 to 9, characterised in that the 20 compound capable of inhibiting the methionine biosynthesis is cyprodinyl, mepanipyrim or pyrimethanil.
11.    A composition according to any one of the claims 1 to 10 further comprising a fungicidal compound (c).
25
12.    A composition according to claim 11, characterised in that the fungicidal compound (c) is selected from captane, propineb, fenhexamid, trifloxystrobin, tolylfluanid, iprodione, procymidone and chlorotalonil.
    30 13.    A composition according to any one of the claims 1 to 12, characterised in
that it further comprises an agriculturally acceptable support, carrier, filler and/or surfactant.
    14.    A method for preventively or curatively controlling phytopathogenic fungi of
35 crops, characterised in that an effective and non-phytotoxic amount of a composition according to any one of the claims 1 to 13 is applied to the seed, the plant and/or to the
 
fruit of the plant or to the soi' in which the plant is gowing or in which it is &mired to grow.
 
5
 
indexation.Ist QCOK tags.Ist

Newsletter

Join our newsletter for CIPIT news through subscriptions!

SEND

Social Media

    

Contact Us

TEL : (254) 703 034 612